期刊文献+

基于判别分析与K近邻算法对塑料吸管的红外光谱分析 被引量:5

Infrared Spectrum Analysis of Plastic Straws Based on Discriminant Analysis and K-nearest Neighbor Algorithm
下载PDF
导出
摘要 为建立一种塑料吸管物证的高效、准确分类方法,利用红外光谱法对来自全国的4个品牌共42个塑料吸管样本进行了检验。经过前期光谱预处理后,利用主成分分析法提取出了25个主成分,累积方差贡献率为99. 689%,并将其作为判别变量进行判别分析。判别结果区分效果良好但交叉验证正确率仅为73. 8%,有待进一步提高。因此将判别得分作为特征变量导入K值为1的K近邻算法中,构建起了分类正确率为100%的K近邻算法模型,实现了对塑料吸管物证的准确分类。 In order to establish an efficient and accurate classification method for the physical evidence of plastic straws,a total of42 plastic straw samples from 4 brands across the country were tested by infrared spectroscopy. After pre-processing of the original spectrum,25 principal components were extracted by principal component analysis,and the cumulative variance contribution rate was99. 689%,which was used as a discriminant variable for discriminant analysis. The discriminating results are good,however,the accuracy rate of cross-validation is only 73. 8%,which needs to be further improved. Therefore,the discriminant score is introduced into the K-nearest neighbor algorithm with K value of 1 as a feature variable,and the K-nearest neighbor algorithm model with classification accuracy rate of 100%is constructed to achieve accurate classification of the physical evidence of plastic straws.
作者 姜红 马枭 杜岩 JIANG Hong;MA Xiao;DU Yan(School of Forensic Science,People s Public Security University of China,Beijing 100038,China)
出处 《塑料工业》 CAS CSCD 北大核心 2020年第5期112-116,共5页 China Plastics Industry
基金 中国人民公安大学2019年度基本科研业务费重点项目(2019JKF222) 国家重点研发计划项目(2017YFC0822004)。
关键词 红外光谱法 判别分析 K近邻算法 塑料吸管 Infrared Spectroscopy Discriminant Analysis K-nearest Neighbor Algorithm Plastic Straws
  • 相关文献

参考文献15

二级参考文献156

共引文献914

同被引文献72

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部