摘要
目的研究并制订中医古代脓毒症医案的筛选标准。方法基于脓毒症最新版指南中的快速序贯器官衰竭评分(qSOFA)诊断标准,在德尔菲法指导下,以问卷调查的形式收集专家意见并对结果进行统计分析,形成中医古代脓毒症医案筛选标准专家共识。结果本研究共进行两轮专家调查,每轮问卷调查均由16名专家参与完成,两轮问卷调查的专家积极系数均为100%,对于脓毒症医案在古代医案中的分布情况及中医描述,初步形成筛选标准的共识意见。结论脓毒症医案筛选标准的确立为系统整理研究古代脓毒症治疗经验奠定了基础。下一步将使用此标准建立"中华历代脓毒症医案数据库",为今后研究提供原始数据。
Objective:To study and formulate the screening criteria of ancient medical cases of sepsis cases in traditional Chinese medicine.Methods:Based on the diagnostic criteria of quick Sequential Organ Failure Assessment(qSOFA)in the latest version of sepsis guidelines,under the guidance of Delphi method,expert opinions were collected in the form of questionnaire survey and the results were statistically analyzed,forming the expert consensus on the selection criteria of ancient sepsis medical cases in traditional Chinese medicine.Results:In this study,there were two rounds of expert surveys,each completed by 16 experts.The positive coefficient of experts in the two rounds of questionnaires was 100%.For the distribution of sepsis cases in ancient medical cases and the description of traditional Chinese medicine,a consensus opinion on screening criteria was preliminarily formed.Conclusion:The establishment of screening criteria for medical cases of sepsis lays a foundation for the systematic arrangement and study of the treatment experience of ancient sepsis.This standard will be used to establish a database of Chinese sepsis medical records,providing the original data for future research.
作者
陈腾飞
赵国桢
刘清泉
姜良铎
孔令博
齐文升
姜树民
孔立
梅建强
胡仕祥
李俊
张俭
刘南
张晓云
廖为民
叶勇
李桂伟
郭海军
Chen Tengfei;Zhao Guozhen;Liu Qingquan;Jiang Liangduo;Kong Lingbo;Qi Wensheng;Jiang Shumin;Kong Li;Mei Jianqiang;Hu Shixiang;Li Jun;Zhang Jian;Liu Nan;Zhang Xiaoyun;Liao Weimin;Ye Yong;Li Gui⁃wei;Guo Haijun(Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University,Beijing 100010,China)
出处
《中国中医急症》
2020年第5期761-764,787,共5页
Journal of Emergency in Traditional Chinese Medicine
基金
北京市属医院科研培育计划项目(PZ2018018)。
关键词
脓毒症
中医
医案
专家共识
Sepsis
Traditional Chinese medicine
Medical cases
Expert consensus