期刊文献+

双通道混合神经网络的文本情感分析模型 被引量:8

Text Sentiment Analysis Model of Two-Channel Hybrid Neural Network
下载PDF
导出
摘要 大多数文本情感分析方法不能有效地反映文本序列中不同单词的重要程度,并且不能获得足够的文本信息。提出了一种双通道混合神经网络的文本情感分析模型,混合神经网络层在胶囊网络(Capsule Network)模型和双向门限循环单元(BiGRU)模型之后分别引入注意力机制,使其自适应地感知上下文信息并提取影响文本情感分析的文本特征,将两种模型提取的特征进行融合。将两种不同的词向量经过混合神经网络层得到的结果进一步融合,由Softmax分类器进行分类。在三个标准数据集上的实验结果证明了该模型的有效性。 Most text sentiment analysis methods cannot effectively reflect the importance of different words in a text sequence and can not obtain enough text information.The text sentiment analysis model of the two-channel hybrid neural network is proposed.Firstly,the hybrid neural network layer adopts the attention mechanism respectively after the capsule network model and the Bidirectional Gated Recurrent Unit(BiGRU)model,so that it can perceive context information adaptively and extract the text features that affect text sentiment analysis.The model fuses the features extracted by the two models.Then,the results obtained by mixing the two different word vectors through the hybrid neural network layer are further fused and classified by using the Softmax classifier.The results on the three datasets demonstrate the validity of the model.
作者 杨长利 刘智 鲁明羽 YANG Changli;LIU Zhi;LU Mingyu(College of Information Science and Technology,Dalian Maritime University,Dalian,Liaoning 116026,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第11期124-128,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61370070,No.61976124) 大连市科技规划项目(No.2011E15SF100) 中央高校基本科研专项基金(No.3132019207)。
关键词 混合神经网络 特征融合 注意力机制 双向门循环单元 胶囊网络 hybrid neural network feature fusion attention mechanism Bidirectional Gated Recurrent Unit(BiGRU) capsule network
  • 相关文献

参考文献3

二级参考文献20

  • 1Liu Hugo,Lieberman H,SelKer T.A Model of Textual Affect Sensing Using Real-world Knowledge[C]//Proc.of International Conference on Intelligent User Interfaces.Miami,Florida,USA:[s.n.],2003:125-132. 被引量:1
  • 2Turney P D,Littman M L.Measuring Praise and Critism:Inference of Semantic Orientation from Association[J].ACM Transactions on Information Systems,2003,21(4):315-346. 被引量:1
  • 3Pang Bo,Lee Lilian,Vaithyanathan S.Thumbs up? Sentiment Classification Using Machine Learning Techniques[C]//Proc.of Conferenee on Empirieal Methods in Natural Language Processing.Morristown,NJ,USA:[s.n.],2002:79-86. 被引量:1
  • 4唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 5徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 6Pak A,Paroubek P.Twitter as a corpus for sentimentanalysis and opinion mining[C]//Proceedings of the InternationalConference on Language Resources and Evaluation,Valletta,Malta,2010. 被引量:1
  • 7Kouloumpis E,Wilson T,Moore J.Twitter sentiment analysis:the good the bad and the OMG![C]//Proceedingsof the International AAAI Conference on Weblogs andSocial Media,North America,2011. 被引量:1
  • 8Saif H,He Yulan,Alani H.Semantic sentiment analysisof twitter[C]//Proceedings of the 11th International Conferenceon the Semantic Web-Volume Part I (ISWC’12),Boston,USA,2012:508-524. 被引量:1
  • 9Agarwal A,Xie B,Vovsha I,et al.Sentiment analysis oftwitter data[C]//Proceedings of Annual Meeting of theAssociation for Computational Linguistics,Stroudsburg,PA,USA,2011:30-38. 被引量:1
  • 10Barbosa L,Feng Junlan.Robust sentiment detection on twitterfrom biased and noisy data[C]//Proceedings of Coling,2010:36-44. 被引量:1

共引文献105

同被引文献69

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部