期刊文献+

多级中文文本情感分类算法研究

Study on hierarchical text sentiment classification algorithm
下载PDF
导出
摘要 针对文本情感分类准确率不高的问题,提出基于CCA-VSM分类器和KFD的多级文本情感分类方法。采用典型相关性分析对文档的权重特征向量和词性特征向量进行降维,在约简向量集上构建向量空间模型,根据模型之间的差异度设计VSM分类器,筛选出与测试文档差异度较小的R个模型作为核Fisher判别的输入,最终判别出文档的情感观点。实验结果表明:该方法比传统支持向量机有较高的分类准确率和较快的分类速度,权重特征和词性特征对分类准确率的影响较大。 A novel hierarchical text sentiment classification approach based on CCA-VSM classifier and kernel Fisher discriminant is proposed to improve classification accuracy.CCA is utilized to reduce the dimensionality of feature vectors.And then vector space model is built on reduced vector set.By doing this,a novel CCA-VSM classifier is proposed according to the diversity between VSM models.R models,which possess smaller diversity,would be selected by CCA-VSM classifier.Kernel Fisher discriminant is used to make judgment.Experiment results show that hierarchical classifier is superior to SVM in text sentiment classification problem,and also show that the method of weight computation and the rule of parts of speech feature selection have big effection on classification results.
出处 《计算机工程与应用》 CSCD 2012年第33期132-135,152,共5页 Computer Engineering and Applications
基金 甘肃省教育厅基金项目(No.1113-01) 甘肃联合大学科研高水平成果项目(No.2011GSP01)
关键词 文本情感分类 核FISHER判别 支持向量机 向量空间模型 相关性分析 text sentiment classification kernel Fisher discriminant Support Vector Machine(SVM) vector space model canonical correlation analysis
  • 相关文献

参考文献8

二级参考文献51

  • 1孙权森,曾生根,杨茂龙,王平安,夏德深.基于典型相关分析的组合特征抽取及脸像鉴别[J].计算机研究与发展,2005,42(4):614-621. 被引量:29
  • 2袁立,穆志纯,徐正光,刘克.基于人耳生物特征的身份识别[J].模式识别与人工智能,2005,18(3):310-315. 被引量:25
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4PANG B,LEE L.Opinion mining and sentiment analysis[M].Boston:Now Publishers Inc,2008:8-10. 被引量:1
  • 5HATZIVASSILOGLOU V,MCKEOWN K R.Predicting the semantic orientation of adjectives[C]// Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics.Madrid:ACL,1997:174-181. 被引量:1
  • 6TURNEY P D.Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.Philadelphia:ACL,2002:417-424. 被引量:1
  • 7KAMPS J,MARX M,MOKKEN R J,et al.Using WordNet to measure semantic orientation of adjectives[C]//Proceedings of the 4th International Conference on Language Reseurces and Evalvation.Lisbon:LREC,2004:1115-1118. 被引量:1
  • 8GODBOLE N,SRINIVASAIAH M,SKIENA S.Large-seale sentiment analysis for news and blogs[C]// Proceedings of the International Conference on Weblogs and Seeial Media.Colorado:[s.n.],2007:219-222. 被引量:1
  • 9YI J,NASUKAWA T,BUNESCU R C,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]// Proceedings of the 3rd IEEE International Conference on Data Mining.Florida:IEEE,2003:427-434. 被引量:1
  • 10PANG B,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing.Philadelphia:[s.n.],2002:79-86. 被引量:1

共引文献654

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部