期刊文献+

A Weighted Trudinger–Moser Inequality on R^N and Its Application to Grushin Operator

原文传递
导出
摘要 Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x'-symmetric function u∈C0^∞(Ω)with∫Ω|■u(x)|^N-a|x'|^-adx≤1,the following uniform inequality holds1/∫Ω|x|^-adx∫Ωe^βa|u|N-a/N-a-1|x'|^-adx≤C,whereβa=(N-a)(2πN/2Γ(k-a/2)Γ(k/2)/Γ(k/2)r(N-a/2))1/N-a-1.Furthermore,βa can not be replaced by any greater number.As the application,we obtain some weighted Trudinger–Moser inequalities for x-symmetric function on Grushin space.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第4期363-378,共16页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Grant No.11201346)。
  • 相关文献

二级参考文献12

  • 1Juha Heinonen,Ilkka Holopainen.Quasiregular maps on Carnot groups[J].The Journal of Geometric Analysis.1997(1) 被引量:1
  • 2Giorgio Talenti.Best constant in Sobolev inequality[J].Annali di Matematica Pura ed Applicata Series.1976(1) 被引量:1
  • 3Moser J.A sharp form of an inequality by N. Trudinger[].Indiana University Mathematics Journal.1971 被引量:1
  • 4Folland GB.A fundamental solution for a subelliptic operator[].Bulletin of the American Mathematical Society.1973 被引量:1
  • 5Kaplan A.Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[].Transactions of the American Mathematical Society.1980 被引量:1
  • 6N S Trudinger.On Imbedding into Orlicz Spaces and Some Applications[].Journal of Mathematics and Mechanics.1967 被引量:1
  • 7Lieb EH.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[].Annals of Mathematics.1983 被引量:1
  • 8. 被引量:1
  • 9O’Neil R.Convolution operators and L(p,q) spaces[].Duke Mathematical Journal.1963 被引量:1
  • 10Carlen,E.,Loss,M.Extremals of functionals with competing symmetries[].Journal of Functional Analysis.1990 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部