摘要
Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.
Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.
基金
The first author is supported by Zhongdian grant of NSFC
a global grant at Wayne State University and by NSF of USA