期刊文献+

Global Poincaré Inequalities on the Heisenberg Group and Applications 被引量:1

Global Poincaré Inequalities on the Heisenberg Group and Applications
原文传递
导出
摘要 Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n. Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第4期735-744,共10页 数学学报(英文版)
基金 The first author is supported by Zhongdian grant of NSFC a global grant at Wayne State University and by NSF of USA
关键词 Heisenberg group Sobolev inequalities Poincaré inequalities best constants Heisenberg group, Sobolev inequalities, Poincaré inequalities, best constants
  • 相关文献

二级参考文献12

  • 1Juha Heinonen,Ilkka Holopainen.Quasiregular maps on Carnot groups[J].The Journal of Geometric Analysis.1997(1) 被引量:1
  • 2Giorgio Talenti.Best constant in Sobolev inequality[J].Annali di Matematica Pura ed Applicata Series.1976(1) 被引量:1
  • 3Moser J.A sharp form of an inequality by N. Trudinger[].Indiana University Mathematics Journal.1971 被引量:1
  • 4Folland GB.A fundamental solution for a subelliptic operator[].Bulletin of the American Mathematical Society.1973 被引量:1
  • 5Kaplan A.Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[].Transactions of the American Mathematical Society.1980 被引量:1
  • 6N S Trudinger.On Imbedding into Orlicz Spaces and Some Applications[].Journal of Mathematics and Mechanics.1967 被引量:1
  • 7Lieb EH.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[].Annals of Mathematics.1983 被引量:1
  • 8. 被引量:1
  • 9O’Neil R.Convolution operators and L(p,q) spaces[].Duke Mathematical Journal.1963 被引量:1
  • 10Carlen,E.,Loss,M.Extremals of functionals with competing symmetries[].Journal of Functional Analysis.1990 被引量:1

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部