期刊文献+

基于深度学习的配变停电电量损失预测 被引量:6

Power Outage Loss Prediction of Distribution Transformer Based on Deep Learning
下载PDF
导出
摘要 停电电量损失预测可为电网调度及规划提供参考,有利于为用户提供可靠供电服务。针对当前配变停电过程中的电量损失问题,先基于模糊C均值聚类算法实现对配变负荷曲线的分类处理及精细化分析,挖掘配变负荷数据规律;在此基础上,运用皮尔逊相关系数算法提取选择输入特征,构建基于门控循环单元神经网络的预测模型,从而得到停电时间负荷值,进而分析预测负荷曲线得到损失电量;最后,基于停电管理工作分析,实现基于粒子群优化的台区用电行为停电优化问题求解。算例测试验证了所提方法的正确性和有效性。 Power outage loss prediction can provide reference for power grid dispatching and planning as well as reliable power supply services for users.Based on the fuzzy C-means clustering algorithm,the load curve of distribution transformer can be classified and analyzed finely.The rules of load data of distribution transformer are mined.Then,the Pearson correlation coefficient algorithm is used to extract the selected input characteristics,and a prediction model based gated cyclic unit neural network is constructed to obtain the load value during power outage.The loss of electricity is obtained by analyzing the load curve.Finally,based on the analysis of power outage management,the power outage optimization problem is solved based on particle swarm optimization.The validity of the proposed method and model are verified by example tests.
作者 罗晨 山宪武 张冬冬 孙羽森 LUO Chen;SHAN Xian-wu;ZHANG Dong-dong;SUN Yu-sen(Satae Grid Xinjiang Electric Power Research Institute,Urumqi 830000,China;Kashgar Electric Power Company,Kashgar 844000,China;State Grid Electric Power Research Institute,NARI Group Corporation,Nanjing 210000,China)
出处 《水电能源科学》 北大核心 2020年第4期176-180,共5页 Water Resources and Power
基金 国家重点研发计划(2016YFB0901100)。
关键词 深度学习 循环神经网络 配变停电 电量损失 预测 deep learning recurrent neural network distribution transformer outage power loss prediction
  • 相关文献

参考文献7

二级参考文献119

共引文献305

同被引文献66

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部