期刊文献+

基于有监督学习的店铺类虚假评论检测 被引量:3

Store Fake Review Detection Based on Supervised Learning
下载PDF
导出
摘要 网络在线评论对于商家和顾客具有重要价值,因而日益受到虚假评论行为的冲击。作为两个重要的在线评论领域,产品类评论(如亚马逊、淘宝)和店铺类评论(如点评网、Yelp)在语言特性、评论行为等方面存在显著差异。虽然研究者们已提出大量针对产品类虚假评论的检测方法,但对于店铺类虚假评论的研究仍然较少。针对Yelp.com网站上旅店、饭店有标注的点评数据,提取并分析各种评论欺诈特征,利用多种有监督学习方法进行虚假评论检测。实验结果表明,检测精度最高可达74%,AUC值可达75%。虽然店铺类虚假评论具有极强的隐蔽性,但通过权衡检测精度和召回率,可利用有监督学习方法对店铺类虚假评论进行有效检测。 Due to the importance for both the merchants and customers,online reviews are increasingly under the attack of fake reviews.As the two main review domains,product reviews(e.g.Amazon,Taobao)and store reviews(e.g.Dianping.com,Yelp.com)significantly differentiate from each other in linguistics and behaviors.While product fake review detection attracts much research interests,store fake review detection has got less attention.In this paper,we focus on store fake review detection problem by exploiting the labeled datasets containing hotel and restaurant reviews from Yelp.com.Specifically,we extract and analyse a number of review spam features,with which we use supervised machine learning approaches to detect fake reviews.Experiments suggest that the maximum precision and AUC can reach 74%and 75%,respectively.Although the fake reviews from Yelp.com are very deceptive,supervised learning methods are effective in detecting fake store reviews by trading off detection precision and recall.
作者 王琢 汪浩 胡润龙 高珮 WANG Zhuo;WANG Hao;HU Run-long;GAO Pei(School of Information Science and Engineering,Shenyang Ligong University,Shenyang 110159,China)
出处 《软件导刊》 2020年第4期71-74,共4页 Software Guide
关键词 网络在线评论 虚假评论 店铺类评论 有监督学习 online review fake review store review supervised learning
  • 相关文献

参考文献4

二级参考文献31

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2胡熠,陆汝占,李学宁,段建勇,陈玉泉.基于语言建模的文本情感分类研究[J].计算机研究与发展,2007,44(9):1469-1475. 被引量:23
  • 3Liu B. Opinion spare detection: Detecting fake reviews and fake reviewers [EB/OL]. http: //www. cs. uic. edu/-liub/ FBS/fake-reviews. html, 2011. 被引量:1
  • 4Jindal N, Liu B. Review spam detection [C]. Proceedings of the 16th international conference on World Wide Web. Banff, Alberta, Canada: ACM, 2007: 1189-1190. 被引量:1
  • 5Jindal N, Liu B, Lim E-P. Finding atypical review patterns for detecting opinion spammers [R]. UIC Tech Rep, 2010. 被引量:1
  • 6Jindal N, Liu B, Lim E-P. Finding unusual review patterns using unexpected rules [C]. Proceedings of the 19th ACM International Conference on Information and Know-ledge Management. Toronto, ON, Canada: ACM, 2010: 1549-1552. 被引量:1
  • 7Lim E-P, Nguyen V-A, Jindal N, et al. Detecting product review spammers using rating behaviors [C]. Proceedings of the 19th ACM International Conference on Information and Know-ledge Management. Toronto, ON, Canada: ACM, 2010:930-948. 被引量:1
  • 8WU G, Greene D, Smyth B, et al. Distortion as a validation criterion in the Identification of suspicious reviews [C]. Wa shington, DC, USA: 1st Workshop on Social Media Analytics, 2010. 被引量:1
  • 9Baccianella S, Esuli A, Sebastiani F. Multi-facet rating of product reviews [C]. Proceedings of the 31th European Conference on IR Research on Advances in Information Retrieval. Toulouse, France: Springer-Verlag, 2009: 461-472. 被引量:1
  • 10陈冠熙.利用使用者评论及商品概述网页撷取商品特色与评价[D].台湾:台湾国立成功大学,2007. 被引量:1

共引文献50

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部