期刊文献+

基于行为与内容的科技产品虚假评论识别 被引量:4

Deceptive Reviews Detection of Technology Products Based on Behavior and Content
下载PDF
导出
摘要 为了尽量减少科技产品领域虚假评论造成的影响以及提高虚假评论识别的准确率,基于该领域中文虚假评论制造及内容特点,提出了一种基于行为和内容的虚假评论识别方法.基于评论者发表评论数量、频率、长度建立了网络水军特征程度模型;提出了长度程度、专业程度、情感密度、格式规范程度、情感失衡程度等内容特征计算方法;最后,提出了以内容特征为向量,行为特征为调节参数的非监督聚类的科技产品虚假评论判别方法.利用领域评论数据集进行相应实验,结果表明所提出方法具有较高的准确率,且对同领域下不同主题的适应性较强. In order to minimize the impact of deceptive reviews in the IT products field and improve recognition accuracy of deceptive reviews,taking into account the manufacture and content characteristics of Chinese deceptive reviews in this filed,we propose a deceptive reviews recognition method base on behavior and content. We establish the characteristics degree mode for Internet mercenaries based on the number of reviewers comment,posting frequency,content length; Second,we design the calculation methods for length degree of review,professional level of review,emotional density of review,format specification degree of review,emotional imbalance degree of review; Finally,propose an unsupervised clustering algorithm base on content feature vector and behavior regulating parameter to recognize the deceptive reviews in the IT products field. We take many experiments use the data sets in the IT products field,the results showthat our method has higher accuracy and also has a strong adaptability to the subjects in the IT products field.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第11期2498-2503,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61462037 61173146 61262033)资助 江西省自然科(20142BAB217014 20142BAB207009)资助 江西省教育厅科技项目(GJJ13303)资助
关键词 行为 内容 虚假评论 科技产品 非监督聚类 behavior content deceptive review s technology products unsupervised clustering
  • 相关文献

参考文献3

二级参考文献21

  • 1Jindal N, I.iu B. Review spare detection. Proceedings of the 16-th International Conference on World Wide Web,2007:1189-1190. 被引量:1
  • 2谭文堂,朱洪,葛斌等.垃圾评论自动过滤方法.同防科技大学学报,2012,34(5):153-157. 被引量:1
  • 3Feng S,Banerjee R,Chai Y J. Syntactic stylometry for deception detection. Proceedings of the 50^th Annual Meeting of the Association for Oomputational I.inguistics, 2012 : 8- 14. 被引量:1
  • 4Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. Proceedings of the 19^th ACM International Conference on Information and Knowledge Management. 2010 : 1549- 1552. 被引量:1
  • 5Lira E P,Nguyen V A,Jindal N,et ag. Detecting product review spammers using rating behaviors. Proceedings of the 19^th ACM International Con{erence on Information and Knowledge Man agement, New York, USA : 2010. 被引量:1
  • 6Wang G, Xie S H, Liu B, et al. Identify online store review spammers via social review graph. ACM Transactions on Intelligent Systems and Technology(TIST) ,2012,3(4). 被引量:1
  • 7Xie S H, Wang G, Lin S Y, et al. Review spam detection via temporal pattern discovery. Proceedings of the 18^th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2012: 823-831. 被引量:1
  • 8Lappas T. Fake reviews:The malicious perspective. Proceedings of the 17^th International conference on Applications of Natural Language Processing to In- formation Systems, 2012 : 23-34. 被引量:1
  • 9Almela A, Rafael V, Cantos P. Seeing through deception: A computational approach to deceit detection in written communication. Proceedings of the 13^th Conference of the EuropeanChapter of the Association for Computational Linguistics: EACL. 2012: 15-22. 被引量:1
  • 10Ott M, Choi Y J, Carolie C, et al. Finding deceptive opinion spare by any stretch of the imagination. Proceedings of the 49^th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011,1:309-319. 被引量:1

共引文献88

同被引文献32

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部