期刊文献+

基于平滑l1范数的深度稀疏自动编码器社区识别算法 被引量:4

Sparse autoencoder community recognition algorithm based on smoothed l1 norm
下载PDF
导出
摘要 大数据时代,利用传统的社区发现算法对大规模复杂网络进行社区结构挖掘显得愈发困难,准确率也较低。因此,提出一种基于平滑l1范数的深度稀疏自编码器社区发现算法(l1-ECDA)。该算法首先采用基于s跳的方法对网络图的邻接矩阵进行预处理;然后构建基于平滑l 1范数的深度稀疏自编码器,并通过训练网络图相似度矩阵得到低维特征矩阵;最后采用K-means算法对低维特征矩阵进行聚类得到网络社区结构。通过在仿真网络与真实网络数据集上的实验表明,l1-ECDA有效提高了社区识别的准确率,且准确率比DBCS算法平均高4%,比DeepWalk和CoDDA算法平均高5.4%。 In the age of big data,it is increasingly difficult to make the community structure mining of large-scale complex networks by using the traditional community discovery algorithm and the accuracy rate is low.Therefore,this research came up with l1-ECDA,a community discovery algorithm for deep sparse self-encoder based on smooth l1 norm.This algorithm preprocessed the adjacency matrix of the network diagram with the method based on s jump.Then it established the deep sparse self-encoder based on smooth l1 norm and got the low dimensional characteristic matrix by training the similarity matrix of the network graph.Finally,it got the network community structure by clustering the low-dimensional feature matrix through the K-means algorithm.Experiments on simulated network and real network data set show that l1-ECDA improves the accuracy of community recognition effectively.Its accuracy rate is 4% higher than the DBCS algorithm on average,and is 5.4%higher than DeepWalk algorithm and CoDDA algorithm on average.
作者 张军祥 李书琴 刘斌 Zhang Junxiang;Li Shuqin;Liu Bin(College of Information Engineering,Northwest A&F University,Yangling Shaanxi 712100,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第4期1063-1068,共6页 Application Research of Computers
基金 陕西省重点研发计划资助项目(2017GY-197) 中国博士后科学基金资助项目(2017M613216) 陕西省自然科学基金资助项目(2017JM6059) 陕西省博士后基金资助项目(2016BSHEDZZ121)。
关键词 深度学习 社区识别 稀疏自编码器 平滑l 1范数 deep learning community recognition sparse self-encoder smoothing l1 norm
  • 相关文献

参考文献13

二级参考文献67

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 3温福喜,刘宏伟.基于2D-PCA和2D-LDA的人脸识别方法[J].计算机应用研究,2007,24(8):201-203. 被引量:7
  • 4Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[ J]. Nature, 1998,393(6) :440 - 442. 被引量:1
  • 5Barabdsi A L, Bonabeau E. Scale-free networks[ J ]. Scientific American, 2003,288(5) :60 - 69. 被引量:1
  • 6Girvan M,Newman M E J. Community structure in social and biological networks [ J ]. Proc Natl Acad Sci USA, 2002, 99 (12) : 7821 - 7826. 被引量:1
  • 7Newman M E J. Fast algorithm for detecting community struc- ture in networks[J] .Plays Rev E,2004,69(6):066133. 被引量:1
  • 8V D Blondel, J Guillaume, R Lambiotte, E Lefebvre. Fast un- folding of COlmnunities in large networks [ J ]. J Stat Mech, 2008, (10) : PIO008. 被引量:1
  • 9Fortunato S, Barthelemy M. Resolution limit in community de- tection[ J]. Proc Nail Acad Sci USA, 2007 104( 1 ) :36 - 41. 被引量:1
  • 10U N Raghavan,R Albert, S Kumara. Near linear time algorithm to detect community structures in large-scale networks[ J]. Phys Rev E,2007,76(3) :036106. 被引量:1

共引文献156

同被引文献43

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部