摘要
提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法。首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合。在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性。
A face recognition technique based on 2D-PCA and 2D-LDA using combining classifier was presented. First the original face images' 2D-PCA and 2D-LDA features were extracted, then, the decision level combination of the classifier was applied for different features. A series of experiments were performed on face image databases: ORL human face databases. The experimental result indicates that the recognition performance of classifier combination in decision level is superior to that of 2D-PCA and 2D-LDA, and is more robust.
出处
《计算机应用研究》
CSCD
北大核心
2007年第8期201-203,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(60302009)
陕西省自然科学基金资助项目(2005F35)
关键词
人脸识别
二维主分量分析
二维线性可分性分析
分类器融合
face recognition
two-dimensional principal component analysis
two-dimensional linear discriminate analysis
classifier combination