期刊文献+

虚拟学习社区中意见领袖识别模型研究 被引量:8

Research on Identifying Model of Opinion Leader in Virtual Learning Community
下载PDF
导出
摘要 虚拟学习社区是传统教育突破空间资源限制形成的便捷性学习环境,其中意见领袖是构成社区信息通路的重要角色,对其他用户有强大的影响力。为了准确识别社区中的意见领袖,构建出虚拟学习社区网络,分析各用户的中心性和社会网络角色特征,选取入度、出度、介数、特征向量中心性、用户活跃度、用户帖子转发量、用户帖子评论量等七个特征值作为筛选条件,结合基于K-means的用户聚类算法,提出基于K-means算法的意见领袖识别模型。最后,将该识别模型应用于某虚拟社区,根据各个聚类子类的特征向量,提取理论意义上的意见领袖集合。实验证明,获取意见领袖集合具有很高的准确性,识别出的意见领袖均处于中心者或桥梁位置,占据着社会网络的优势位置,在虚拟社区中承担着核心或中介等特殊作用。 Virtual learning community is a convenient learning environment which breaks through the limitation of traditional educational space resources. Opinion leaders play an important role in the formation of community information channels and have a strong influence on other users. In order to accurately identify opinion leaders in the community,we construct a virtual learning community network,analyze the user-centered and social network role characteristics,and select in degree,out degree,betweenness centrality,eigenvector centrality,user activity,the amount of user posts forwarded,number of comments on user posts as screening conditions. Based on K-means user clustering algorithm,an opinion leader recognition model based on K-means algorithm is proposed. Finally,we use the model to process a virtual community,and extract the theoretical opinion leader set according to the feature vectors of each clustering subclass. Experiment shows that the collection of opinion leaders has high accuracy,and the identified opinion leaders are in the center or bridge position,occupying the dominant position of social network,and playing a special role of core or intermediary in the virtual community.
作者 许睿 李艳翠 訾乾龙 李宗儒 张平川 XU Rui;LI Yan-cui;ZI Qian-long;LI Zong-ru;ZHANG Ping-chuan(School of Information Engineering,Henan Institute of Science and Technology,Xinxiang 453003,China)
出处 《计算机技术与发展》 2020年第5期56-60,共5页 Computer Technology and Development
基金 国家自然科学基金(61502149) 河南省高等教育教学改革研究与实践项目(2017SJGLX392) 河南科技学院大学生创新创业训练项目(2018CX74)。
关键词 意见领袖 识别模型 中心性 虚拟社区 K-MEANS算法 opinion leader recognition model centrality virtual community K-means algorithm
  • 相关文献

参考文献10

二级参考文献128

共引文献148

同被引文献98

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部