摘要
为了研究加工过程中变化的刀尖频响函数导致机床切削参数选择的不确定性,以主轴转速与运动部件位置为研究对象,提出基于广义动态空间的机床切削稳定性研究方法。该方法结合切削颤振理论与切削试验,推导工况下刀尖频响函数计算公式,通过引入正交试验法规划切削试验方案,确定主轴转速与运动部件位置对切削稳定性的影响程度以及最优参数组合,同时计算刀尖频响函数研究机床处于不同转速及位置的颤振稳定域图预测。将该方法运用于某型立式加工中心,识别主轴转速与主轴箱Z向进给位置显著影响切削稳定性,并确定刀具最优姿态,通过计算刀尖频响函数绘制颤振稳定域图,结合切削试验验证了该方法的有效性,为实际加工合理选择切削参数提供技术支持。
A method to study the machine tool cutting stability is proposed in generalized dynamic space,which takes the spindle speed and moving parts positions as the objectives,for the variable in-process tool point frequency response functions(FRFs)cause uncertain choices for the cutting parameters.This method combines chatter theory and cutting experiment to derive the formulas to calculate tool point FRF and introduce orthogonal experiment method to arrange the cutting experiment.Thus,the influencing degree of the variables and their optimal combination are determined.Also these tool point FRFs are recalculated to study the cutting stability chart prediction.Applying this method in a vertical machining center,the spindle speed and Z direction displacement were identified to affect the cutting stability mostly,and the best working state for tool was determined.The stability chart was plotted by adopting the recalculated tool point FRF,from which the cutting parameters were chosen to conduct the cutting experiments.The results verify the effectiveness of the proposed method,which lays a technical support for choosing reasonable cutting parameters in machining process.
作者
邓聪颖
冯义
赵洋
魏博
DENG Congying;FENG Yi;ZHAO Yang;WEI Bo(School of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Mechanical Engineering,Chongqing University,Chongqing 400030,China)
出处
《河北工业大学学报》
CAS
2020年第2期60-67,共8页
Journal of Hebei University of Technology
基金
国家自然科学基金(51705058)
中国博士后科学基金(2018M633314)
重庆市博士后科研项目(XmT2018040)
重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0005)。
关键词
切削稳定性
频率响应函数
稳定域图
正交试验
广义动态空间
cutting stability
frequency response function
chatter stability chart
orthogonal experiment
generalized dynamic space