摘要
针对传统交通数据可视分析方法缺乏预测分析能力的问题,提出了基于出租车出行数据的预测式可视分析方法,支持用户更有效地探索未来的交通状况.在可视分析模型中,提出了结合天气、星期几等多种非交通因素的预测模型,提高了预测的准确度;提出了基于预测数据和广义地点类型约束的路径规划方法,获得了更优的路径规划结果;以多种可视化手段分析和预测了出租车司机的运营状况,帮助司机进行运营决策.以温州市出租车数据进行的实验结果表明,与传统方法相比,文中方法能更准确地预测交通状况和运营状况,并获得更合理的路径规划结果.
This paper presents a predictive visual analytics method for exploring taxi trajectory data.First,a new algorithm that integrates traditional LSTM with time information and weather conditions is designed to predict the traffic in the city.Second,a trip planning model based on real-time forecasting data is proposed,in which the constraints of generalized location semantics are included for more reasonable result.Finally,a suite of visualization tools is developed to analyze the taxi operation and predict their income in each road,which can enhance the operational decisions of drivers.Experimental results demonstrate the effectiveness of our method.
作者
吴向平
徐懂事
吴向阳
金剑秋
Wu Xiangping;Xu Dongshi;Wu Xiangyang;Jin Jianqiu(Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,College of Information Engineering,China Jiliang University,Hangzhou 310018;School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310018;School of Computer and Information Engineering,Zhejiang Gongshang University,Hangzhou 310018)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2020年第4期520-530,共11页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61972122)
浙江省自然科学基金(LY18F020016,LY15F020006)。
关键词
预测式可视分析
交通预测
路径规划
可视分析
predictive visual analytics
traffic prediction
trip planning
visual analytics