期刊文献+

基于空间区域功能划分的人群移动模式可视分析 被引量:5

Visual Analysis of Human Movement: A Functional Region Perspective
下载PDF
导出
摘要 随着城市发展和城市人口密集化趋势的愈加明显,大量人群移动造成的交通拥堵、空气污染等城市问题日益突出;为了直观、有效地分析人群移动现象和理解背后的语义信息,提出了一可视分析方法,通过整合道路卡口数据和城市POI数据,采用改进后的DBSCAN算法将区域进行功能相似性划分以增强移动模式背后的意图,从而挖掘人群移动在数值和语义上的模式.进一步,基于Bubble Set可视化展示不同功能区域的分布和差异性,并连接不同的功能区块以展示区域之间的人群移动.最后通过案例分析,结合真实数据和区域功能特征,分析和探索人群移动意图,得到人群移动模式和功能区域之间的联系. With the rapid development of the urbanization process, the society is suffering from traffic congestion, air pollution and other urban problems caused by the large amount of human movement. This paper presents a visual analysis method, which integrates vehicle surveillance data, POI data to help analyze the human mobility patterns. The proposed method applies an improved DBSCAN algorithm, which divides geographical area into functional regions based on the POI data to enhance the hidden intention behind human movement. Furthermore, we present the distribution and differentiation of different functional regions with Bubble Set, and visually link the human mobility patterns among different functional regions. Finally, we analyze and explore the human movement intention through the case studies. The case studies are equipped with real world data and the characteristics of the functional regions to help understand the human mobility patterns.
作者 孙国道 柳芬 蒋莉 梁荣华 Sun Guodao;Liu Fen;Jiang Li;and Liang Ronghua(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第6期1073-1081,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61602409) 浙江省杰出青年科学基金(LR14F020002) 科技部中小企业中欧国际合作项目 "控制科学与工程"浙江省重中之重学科
关键词 可视分析 人群移动模式 空间区域功能划分 visual analysis human mobility pattern region functional division
  • 相关文献

参考文献2

二级参考文献60

  • 1齐观德,潘纲,李万坚等.当出租车轨迹挖掘遇见智能交通[J].中国计算机学会通讯,2013,9(8):30-36. 被引量:4
  • 2何贤国. 出租车GPS大数据可视化研究[D]. 杭州:浙江工业大学, 2013. 被引量:1
  • 3Wang Z C, Lu M, Yuan X R, et al. Visual traffic jam analysis based on trajectory data [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2159-2168. 被引量:1
  • 4White C E, Bernstein D, Kornhauser A L. Some map matching algorithms for personal navigation assistants [J]. Transportation Research Part C: Emerging Technologies, 2000, 8(1-6):91-108. 被引量:1
  • 5Quddus M A, Ochieng W Y, Noland R B. Current map-matching algorithms for transport applications: state-of-the art and future research directions [J]. Transportation Research Part C: Emerging Technologies, 2007, 15(5): 312-328. 被引量:1
  • 6Lou Y, Zhang C Y, Zheng Y, et al. Map-Matching for Low-Sampling-Rate GPS Trajectories [C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2009: 352-361. 被引量:1
  • 7Yuan J, Zheng Y, Zhang C Y, et al. An interactive-voting based map matching algorithm[C]//Proceedings of the 11th International Conference on Mobile Data Management. Piscataway: IEEE Press, 2010: 43-52. 被引量:1
  • 8Liu S Y, Pu J S, Luo Q, et al. VAIT: a visual analytics system for metropolitan transportation [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1586-1596. 被引量:1
  • 9Andrienko G, Andrienko N, Wrobel S. Visual analytics tools for analysis of movement data [J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2): 38-46. 被引量:1
  • 10Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS: ordering points to identify the clustering structure [C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1999: 49-60. 被引量:1

共引文献26

同被引文献50

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部