摘要
针对数据样本较少,且时间序列不连续的邯郸重度污染日的空气质量指标数据,采用基于数据分组的分数阶GM(1,1)模型(The data grouping GM(1,1) model with fractional order accumulation,简称DGFGM(1,1)),对邯郸地区2018-2019年12月28、29、30日三天的AQI及PM2. 5、PM10、NO2的日均浓度进行预测。使用该模型预测的AQI、PM2. 5、PM10和NO2的MAPE分别为2. 89%、3. 28%、3. 83%、3. 23%,表明DGFGM(1,1)模型具有良好的预测性能。预测结果显示,在当前的治理力度下,邯郸地区空气重污染的发生仍然难以避免,有些污染物浓度不降反升,除2018-2019年的12月30日的NO2外,其他时间的所有污染物浓度全部超过标准限值,污染情况相当严重。当地有关部门应重视对极端重度污染天气的预防和治理,使得大气环境质量得以全面提升。
In order to effectively predict the air quality indicators of heavily polluted days with small sample size and discontinuous time series,The data grouping GM( 1,1) model with fractional order accumulation( DGFGM( 1,1)) was used to predict AQI and the daily concentrations of PM2. 5,PM10,NO2 for December 28,29 and 30 in Handan. The MAPE of the AQI,PM2. 5,PM10 and NO2 predicted by DGFGM( 1,1) model were 2. 89%,3. 28%,3. 83% and 3. 23%,respectively,indicating that this model has a high prediction accuracy. The prediction results demonstrate that under the current governance measures,the occurrence of heavily polluted days is still inevitable,and the concentration of some air quality indicators will increase rather than decrease. Except for the daily concentrations of NO2 on December 30 during 2018 to 2019,the concentrations of all air quality indicators exceeded the grade II standard of Chinese Ambient Air Quality at other times. Local departments should pay attention to the prevention and treatment of extremely heavy pollution days,so as to comprehensively improve the quality of atmospheric environment.
作者
王彦林
李孥
吴利丰
WANG Yanlin;LI Nu;WU Lifeng(College of Economics and Management,Hebei University of Engineering,Handan,Hebei 056038,China)
出处
《河北工程大学学报(自然科学版)》
CAS
2020年第1期91-97,共7页
Journal of Hebei University of Engineering:Natural Science Edition
基金
河北省高层次人才资助项目(A2017003100)。
关键词
数据分组
分数阶GM(1
1)模型
邯郸
空气质量指标
the data grouping
GM(1,1) model with fractional order accumulation
Handan
air quality indicators