期刊文献+

基于随机森林算法的95598投诉预测方法研究 被引量:4

Research on 95598 Complaint Prediction Method Based on Random Forest
下载PDF
导出
摘要 为减少投诉风险发生,提出一种基于随机森林算法的95598工单投诉预测方法,实现对95598工单的直接投诉预测与转化投诉预测。首先,对95598历史工单进行数据预处理;其次,在充分考虑历史工单的供电地区、时间、天气、前期工单事因、重复来电和投诉倾向等情况的基础上,建立了基于随机森林算法的95598电力服务投诉工单预测模型。以某市全年95598工单数据为例,建立了该市的95598电力服务投诉工单预测模型,并以Weka 3.8数据挖掘软件为测试平台,对所建立的模型进行测试,并与其他数据挖掘算法的预测性能进行了对比分析。结果表明,该方法能够实现对95598投诉风险的有效预测,投诉预警效果良好。 To reduce the risk of complaints, the paper proposes a 95598 work order complaint prediction method based on Random Forest, which achieves its direct complaint prediction and transformed complaint prediction. Firstly, the data of 95598 historical work orders is preprocessed. Secondly, given the power supply area, time, weather, earlier work orders cause, repeated calls and complaints tendency of negative work orders, a negative work order prediction model of 95598 electric power service based on Random Forest algorithm is established. Finally, by use of the 95598 work order data of a city as an example, the negative work order prediction model of 95598 electric power service in the city is established. Taking the Weka 3.8 data mining software as the test platform, the model established in this paper is tested, and the prediction performance of other data mining algorithms is compared and analyzed. The results show that this method can effectively predict the risk of 95598 complaints and achieve favourable early warning against complaints.
作者 李鹏鹏 周丹阳 姜朝明 喻湄霁 刘伟 王涛 LI Pengpeng;ZHOU Danyang;JIANG Chaoming;YU Meiji;LIU Wei;WANG Tao(State Grid Taizhou Power Supply Company,Taizhou Zhejiang 318000,China;School of Electrical Engineering and Electronic Information,Xihua University,Chengdu 610039,China)
出处 《浙江电力》 2020年第4期57-62,共6页 Zhejiang Electric Power
关键词 数据挖掘 随机森林 投诉预测 电力服务 95598工单 data mining Random Forest complaint forecast power service 95598 work orders
  • 相关文献

参考文献13

二级参考文献141

共引文献736

同被引文献57

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部