期刊文献+

TPE-XGBOOST与LassoLars组合下PM2.5浓度分解集成预测模型研究 被引量:13

An integrated prediction model of PM2.5 concentration based on TPE-XGBOOST and LassoLars
原文传递
导出
摘要 在我国当前大气重污染的环境下,PM2.5浓度的预警预报工作显得尤为重要.由于PM2.5浓度时间序列具有高度复杂性与随机性等特点,且传统的PM2.5浓度分解集成预测方法没有考虑空气质量因素与气象因素的信息,仅靠PM2.5浓度的历史值难以准确对其精准预测.本文在对历史数据的分解下,对高频数据引入TPE-XGBOOST模型,对低频数据引入LassoLars模型,结合空气质量因素与气象因素反映分解特征的变化趋势,对PM2.5浓度时间序列展开预测研究.通过实验,该组合模型显示出了良好的预测效果,且相对于单一分解集成预测模型有较大的预测精度提升. Because of serious atmospheric pollution,the early warning and forecasting of PM2.5 concentration is particularly important.Due to the high complexity and randomness of the time series of PM2.5concentration,the traditional integrated PM2.5 concentration decomposition prediction method does not take the air quality and meteorological factors into account.Thus,it is difficult to predict the PM2.5concentration accurately only by the historical value.By decomposing the historical data,this paper introduced the TPE-XGBOOST model for high-frequency data and LassoLars model for low-frequency data,combined air quality and meteorological factors to reflect the variation trend of decomposition characteristics,and made prediction for the time series of PM2.5 concentration.Through the experiment,the model shows good prediction effect,and has higher prediction accuracy compared with the single decomposition integrated prediction model.
作者 翁克瑞 刘淼 刘钱 WENG Kerui;LIU Miao;LIU Qian(School of Economics and Management,China University of Geosciences,Wuhan 430074,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2020年第3期748-760,共13页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71874163).
关键词 PM2.5浓度值预测 集成经验模态分解 贝叶斯优化算法 极限梯度提升树 套索回归 多元因素 PM2.5 concentration predicting EEMD Bayesian optimization XGBOOST Lasso multivariate factors
  • 相关文献

参考文献13

二级参考文献118

共引文献194

同被引文献192

引证文献13

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部