期刊文献+

运用贝叶斯方法的PM_(2.5)浓度时空建模与预测 被引量:14

Spatio-temporal modeling and prediction of PM_(2.5) concentration based on Bayesian method
原文传递
导出
摘要 针对当前我国大部分地区正面临严重的空气污染问题,对重污染区域进行时空建模具有重要的意义。该文基于贝叶斯时空模型建立了京津冀区域的PM2.5浓度时空预测模型,该模型充分考虑了PM2.5浓度的时间变异特性与空间分布特性,并引入了气象数据作为协变量对没有监测站的位置进行预测。实验结果表明,该方法具有很好的预测精度,其在测试站点上的拟合优度达到了0.9以上,能够应用于区域级PM2.5浓度的时空分布建模与预测。 Most areas of China are facing serious air pollution problems,spatio-temporal modeling of heavy pollution areas has important significance.This paper established a space-time predictive model of PM2.5concentration in Jing-Jin-Ji area based on Bayesian method,which not only took into account the temporal and spatial variability of PM2.5concentration,but also used the meteorological data as covariates to make prediction.Experimental result showed that this method had good prediction accuracy,and its index of agreement on the test site reached higher than 0.9,which indicated that it could be used for spatiotemporal modeling and prediction of PM2.5concentration at the regional level.
出处 《测绘科学》 CSCD 北大核心 2016年第2期44-48,共5页 Science of Surveying and Mapping
基金 国家科技支撑计划项目(2012BAC20B06)
关键词 贝叶斯 时空预测 PM2.5浓度 Bayesian spatio-temporal prediction PM2.5 concentration
  • 相关文献

参考文献17

  • 1CRESSIE N.The origins of kriging[J].Math Geol.,1990,22(3):239-252. 被引量:1
  • 2CARUSO C,QUARTA F.Interpolation methods comparison[J].Computers&Mathematics with Applications,1998,35(12):109-126. 被引量:1
  • 3LI J,HEAP A D.A review of comparative studies of spatial interpolation methods in environmental sciences:performance and impact factors[J].Ecological Informatics,2011,6(3):228-241. 被引量:1
  • 4CRESSIE N,WIKLE C K.Statistics for spatio-temporal data[Z].John Wiley&Sons,2011. 被引量:1
  • 5LI L.An application of a shape function based spatiotemporal interpolation method to ozone and populationbased environmental exposure in the contiguous U.S.[J].J.Env.Inform.,2008,12(2):120-128. 被引量:1
  • 6LI L,REVESZ P.Interpolation methods for spatiotemporal geographic data[J].Computers,Environment and Urban Systems,2004,28(3):201-227. 被引量:1
  • 7TIAN J,LI L,PILTNER R,et al.Spatiotemporal interpolation methods for air pollution exposure[C]//Ninth Symposium on Abstraction,Reformulation,and Approximation.SARA,2011:75-81. 被引量:1
  • 8LE N D,ZIDEK J V.Interpolation with uncertain spatial covariances:a Bayesian alternative to Kriging[J].Journal of Multivariate Analysis,1992,43(2):351-374. 被引量:1
  • 9GELFAND A E.Hierarchical modeling for spatial data problems[J].Spatial Statistics,2012(1):30-39. 被引量:1
  • 10ALLENBY G M,ROSSI P E,MCCULLOCH R E.Hierarchical bayes models:apractitioners guide[J].SSRN Electronic Journal,2005. 被引量:1

同被引文献158

引证文献14

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部