期刊文献+

Talagrand Inequality on Free Path Space and Application to Stochastic Reaction Diffusion Equations 被引量:1

原文传递
导出
摘要 By using a split argument due to[1],the transportation cost inequality is established on the free path space of Markov processes.The general result is applied to stochastic reaction diffusion equations with random initial values.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第2期253-261,共9页 应用数学学报(英文版)
基金 supported by National Natural Science Foundation of China(11671372,11771326,11831014).
  • 相关文献

参考文献2

二级参考文献15

  • 1Li-mingWu,Zheng-liangZhang.Talagrand's T_2-transportation Inequality w.r.t.a Uniform Metric for Diffusions[J].Acta Mathematicae Applicatae Sinica,2004,20(3):357-364. 被引量:10
  • 2Bobkov, S., Gentil, I., Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pure Appl.,80:669-696 (2001). 被引量:1
  • 3Bobkov, S., GStze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163:1-28 (1999). 被引量:1
  • 4Djellout, H., Guillin, A., Wu, L. Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab., 2004 (to appear). 被引量:1
  • 5Fang, S., Shao, J. Transportation cost inequalities on path and loop groups. J.Funct. Anal., (to appear). 被引量:1
  • 6Feyel, D., Ustunel, A.S.Measure transport on Wiener space and Girsanov theorem. CRAS Serie I 334:1025-1028 (2002). 被引量:1
  • 7Feyel, D., Ustunel, A.S. The Monge-Kantorovitch problem and Monge-Ampere equation oil Wiener space.Probab. Theor. Rel. Fields, 128(3): 347-385 (2004). 被引量:1
  • 8Ledoux, M. The concentration of measure phenomenon Vol.89, Mathematical Surveys and Monographs,AMS, 2001. 被引量:1
  • 9Marton, K. Bounding d-distance by information divergence: a method to prove measure concentration.Ann. Probab., 24:857-866 (1996). 被引量:1
  • 10Marton, K. A measure concentration inequality for contracting Markov chains. Geom. Fhnct. Anal., 6:556-571 (1997). 被引量:1

共引文献10

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部