期刊文献+

分数布朗单驱动的随机微分方程的传输不等式

TRANSPORTATION INEQUALITIES FOR THE LAW OF A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY FRACTIONAL BROWN SHEET
下载PDF
导出
摘要 本文研究了分数布朗单驱动的随机微分方程的问题,利用Girsanov变换,获得了该方程的解的分布在在连续轨道空间上关于一致度量满足T2传输不等式的结果,推广了现有文献中的结论. In this paper,we study the stochastic differential equation driven by fractional Brown Sheet.By using Girsanov transformation,we prove the T2-transportation inequalities for the law of the equation on the continious paths space with respect to the uniform norm,and it generalizes the conclusions in the literature.
作者 梁唯伊 LIANG Wei-yi(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)
出处 《数学杂志》 2022年第3期226-236,共11页 Journal of Mathematics
关键词 随机微分方程 传输不等式 分数布朗单 GIRSANOV变换 stochastic differential equation transportation inequality fractional brown sheet Girsanov transformation
  • 相关文献

参考文献3

二级参考文献16

  • 1Li-mingWu,Zheng-liangZhang.Talagrand's T_2-transportation Inequality w.r.t.a Uniform Metric for Diffusions[J].Acta Mathematicae Applicatae Sinica,2004,20(3):357-364. 被引量:10
  • 2Bobkov, S., Gentil, I., Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pure Appl.,80:669-696 (2001). 被引量:1
  • 3Bobkov, S., GStze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163:1-28 (1999). 被引量:1
  • 4Djellout, H., Guillin, A., Wu, L. Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab., 2004 (to appear). 被引量:1
  • 5Fang, S., Shao, J. Transportation cost inequalities on path and loop groups. J.Funct. Anal., (to appear). 被引量:1
  • 6Feyel, D., Ustunel, A.S.Measure transport on Wiener space and Girsanov theorem. CRAS Serie I 334:1025-1028 (2002). 被引量:1
  • 7Feyel, D., Ustunel, A.S. The Monge-Kantorovitch problem and Monge-Ampere equation oil Wiener space.Probab. Theor. Rel. Fields, 128(3): 347-385 (2004). 被引量:1
  • 8Ledoux, M. The concentration of measure phenomenon Vol.89, Mathematical Surveys and Monographs,AMS, 2001. 被引量:1
  • 9Marton, K. Bounding d-distance by information divergence: a method to prove measure concentration.Ann. Probab., 24:857-866 (1996). 被引量:1
  • 10Marton, K. A measure concentration inequality for contracting Markov chains. Geom. Fhnct. Anal., 6:556-571 (1997). 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部