期刊文献+

基于两种统计模型的软件缺陷预测 被引量:2

Software defect prediction based on two statistical models
下载PDF
导出
摘要 采集软件研发过程中可能与缺陷有关的过程数据或产品数据,对软件缺陷数量进行预测,达到对软件质量的把控。采用LASSO进行特征值选择确定最佳影响因子集合,采用线性模型和贝叶斯网络模型分别对样本数据进行预测,说明两种模型的因子分析过程和模型构建过程,采用R语言进行编码实现。通过预测结果的对比验证了当数据经过二次主观加工后,采用线性模型的预测结果比贝叶斯网络预测结果更准确。 According to the collection of processing and product data of software development relating to the defect,it can make a prediction of the number of the software bug to control the software quality.The best impact cues assemblage was confirmed using LASSO characteristic method,the number of bug was predicted using two methods including linearity method and Bayes network method based on the sample data.The processes of development were described using these two methods and R language was used to achieve encoding.Comparing the prediction results of two methods,it verifies that the linearity method is more accurate than the Bayes network method because of the second objective operation on sample data.
作者 马由 汤艳 解斐 MA You;TANG Yan;XIE Fei(Software Testing Center,China Electronics Technology Group Corporation No.15 Research Institute,Beijing 100083,China)
出处 《计算机工程与设计》 北大核心 2020年第4期1046-1051,共6页 Computer Engineering and Design
关键词 缺陷预测 LASSO特征值选择 贝叶斯网络模型 线性模型 R语言 defect prediction LASSO factor choosing method Bayes network linearity model R language
  • 相关文献

参考文献4

二级参考文献29

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2Toksari M Duran. Ant colony optimization for finding the global minimum [J]. Applied Mathematics and Computation, 2006, 126 (1): 308-316. 被引量:1
  • 3Socha K, Dorigo M. Ant colony optimization for continuous do- mains[J].European Journal of Operational Research, 2008, 185 (3): 1155-1173. 被引量:1
  • 4Andre V Abs da Cruz, Marley M B R Vellasco, Marco Aurelio C Pacheco. Quantum-inspired evolutionary algorithm for nume- rical optimization [C] //IEEE Congress on Evolutionary Com- putation, Vancouver, 2007: 2630-2637. 被引量:1
  • 5Yan W, Xiaoyue F, Yanxin H, et al. A novel quantum swarm evolutionary algorithm and its application [J]. Neurocompu- ring, 2007, 70 (4-6): 633-640. 被引量:1
  • 6Dorigo M, Birattari M, Stutzle T. Ant colony optimization: Ar- tificial ants as a computational intelligence technique[J]. IEEE Computational Intelligence Magazine, 2006 (11) .. 28-39. 被引量:1
  • 7DorigoM,StutzleT.蚁群优化[M].张军,胡晓敏,罗旭耀,等译.清华大学出版社,2007:63-115. 被引量:1
  • 8Su A X, Fan M T, Li Z L. The Reliability Analysis of Distribution Sys- tem Based on Dynamic Bayesian Network [ C]//2012 China Interna- tional Conference on Electricity Distribution ( CICED), Shanghai, Sep. 2012:1 -4. 被引量:1
  • 9Andras P. A Bayesian Interpretation of the Particle Swarm Optimization and Its Kernel Extension [ J ]. PLOS One,2012,7 ( 11 ) : e48710. 被引量:1
  • 10Karabulut Mustafa, Ibrikci Turgay. A Bayesian Scoring Scheme Based Particle Swarm Optimization Algorithm to Identify Transcription Factor Binding Sites [ J ]. Applied Soft Computing, 2012, 12 ( 9 ) : 2846 - 2855. 被引量:1

共引文献9

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部