期刊文献+

一种基于簇中心点自动选择策略的密度峰值聚类算法 被引量:47

Improved Density Peaks Based Clustering Algorithm with Strategy Choosing Cluster Center Automatically
下载PDF
导出
摘要 针对基于密度峰值的聚类算法(CFSFDP)无法自行选择簇中心点的问题,提出了CFSFDP改进算法。该算法采用簇中心点自动选择策略,根据簇中心权值的变化趋势搜索"拐点",并以"拐点"之前的一组点作为各簇中心,这一策略有效避免了通过决策图判决簇中心的方法所带来的误差。仿真实验采用5类数据集,并与DBSCAN及CFSFDP算法进行了对比,结果表明,CFSFDP改进算法具有较高的准确度及较强的鲁棒性,适用于较低维度的数据的聚类分析。 A new density peaks based clustering method (CFSFDP) was introduced in the paper. For the problem that it is difficult to decide the cluster number with CFSFDP, an improved algorithm was presentea, wltn a cluster center autu-matic choosing strategy, the algorithm search for the "turning points" with the trends of cluster center weight's changing. Then we could regard a set of points whose weight is bigger than "turning points" as the cluster center. The error brought by ruling in the decision graph could be avoided with the strategy. Experiment was done to compare to DBSCAN and CFSFDP with 5 kinds of datasets. 'The results show that the improved algorithm has better performance in accuracy and robustness, and can be applied in clustering analysis for low dimension data.
出处 《计算机科学》 CSCD 北大核心 2016年第7期255-258,280,共5页 Computer Science
关键词 聚类 DBSCAN 密度峰值 簇中心点 Clustering, DBSCAN, Density peak, Cluster center
  • 相关文献

参考文献3

二级参考文献39

  • 1何中胜,刘宗田,庄燕滨.基于数据分区的并行DBSCAN算法[J].小型微型计算机系统,2006,27(1):114-116. 被引量:16
  • 2Han I,Kamber M. Data Mining:Concepts and Techniques[M]. Berlin: Morgan Kaufmann Publishers, 2000: 335-389. 被引量:1
  • 3Faber V. Clustering and the continuous K-means algorithm[EB/ OL]. http://library. 1an1. gov/cgi-bin/get-filefi00412967. pdf, 2009-10-03. 被引量:1
  • 4Yu Jian,Cheng Qian-sheng, Huang Hou-kuan. Analysis of the weighting exponent in the FCM[J]. IEEE Transactions on Systems, Man and Cybernetics-part B: Cybernetics, 2004, 34 ( 1 ): 634-639. 被引量:1
  • 5Jian Yu, Yang Miin-shen. Optimality Test for Generalized FCM and Its Application to Parameter Selection[J]. IEEE Transactions on Fuzzy Systems, 20135,13(1) : 164-176. 被引量:1
  • 6盛骤 谢式千 潘承毅.概率论与数理统计(第三版)[M].北京:高等教育出版社,2004.. 被引量:9
  • 7Feng P J, Ge L D. Adaptive DBSCAN-based algorithm for constellation reconstruction and modulation identification: proceedings of radio science conference 200 [ C ]. Beijing: Pub House of Electronics Industry,2004. 被引量:1
  • 8Tariq Ali, Sohail Asghar. Critical analysis of DBSCAN varia- tions : information and emerging technologies (ICIET) 2010 international conference [ C ]. Bali Island : Indonesia, 2010. 被引量:1
  • 9Tran Manh Thang, Juntae Kim. The anomaly detection by U- sing DBSCAN clustering with multiple parameters:informa- tion science and application (ICISA) 2011 international f conference on[ C ]. Jeju Island:Republic of Korea,2011. 被引量:1
  • 10SomanKPS,DiwakarVA著,范明,牛常勇译.数据挖掘基础教程[M].北京:机械工业出版社.2009:239-240. 被引量:1

共引文献60

同被引文献290

引证文献47

二级引证文献223

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部