摘要
以激光引信小型化背景为基础,对脉冲激光电磁辐射干扰问题进行了研究。结果表明,通过研究小型化脉冲激光电磁辐射的接收模块、脉冲激光引信发射的工作机理,从而得到其辐射、传导和在此过程中所产生的干扰机制原理。对于脉冲激光电磁辐射的发射和接收模块中,由于会受到干扰的影响,因而采用重屏蔽措施保证信号不受到影响,通过研究分析显示,当使用厚度为1.55×10^-3 m的钢板材料作为屏蔽材料的时候,可以得到较为理想的屏蔽状态。针对于小型化的脉冲激光电磁辐射发射模块负载变化波动加大、接受模块的电源电压电流变化剧烈从而导致传导干扰的产生和共差模干扰的产生,同时还可以增加线性阻抗缓冲网络、稳定网络和共差模合成的扼流圈滤波器的方式来降低干扰的影响。仿真分析发射系统屏蔽前后电磁辐射,结果表明,使用前后,缓冲网络实测MOS管控制端电压,在缓冲网络加入后,下降沿为110.3 ns,上升沿为90.1 ns,和仿真结果较好符合,引信系统中具有较好的抗干扰效果,传导干扰得到控制。
Based on the background of miniaturization of laser fuze,the problem of electromagnetic radiation interference from pulsed laser is studied in this paper.The results show that the generation mechanism of radiation and conduction interference can be obtained by analyzing the transmitting principle of receiving module and pulse laser fuze.Re-shielding measures are adopted for the radiation interference of the transmitting and receiving modules.The analysis shows that the steel material with a thickness of 1.55×10^-3 m can achieve good shielding effect.Conduction interference and common-differential-mode interference caused by severe load variation of transmitter module,large current and large voltage variation of power supply of receiver module are suppressed by adding linear impedance buffer network,stable network and common-differential-mode synthetic choke-coil filter.The electromagnetic radiation of the transmitting system before and after shielding is simulated and analyzed.The results show that the voltage of the control terminal of MOS transistor measured by the buffer network before and after shielding is added to the buffer network,the falling edge is 110.3 ns and the rising edge is 90.1 ns.The simulation results are in good agreement with the simulation results.The fuze system has good anti-interference effect and the conducted interference is controlled.
作者
宋定宇
Song Dingyu(Department of Educational Affairs of Nanyang Institute of Technology,Nanyang,Henan 473000,China)
出处
《应用激光》
CSCD
北大核心
2019年第6期1012-1017,共6页
Applied Laser
关键词
小型化
激光引信
脉冲
电磁辐射干扰
屏蔽
miniaturization
laser fuze
pulse
electromagnetic radiation interference
shielding