期刊文献+

基于HOG-CSLBP与深度学习的跨年龄人脸识别算法 被引量:5

Cross-Age Face Recognition Algorithm Based on HOG-CSLBP and Deep Learning
下载PDF
导出
摘要 针对人脸识别中识别精度低的问题,提出一种基于深度学习的跨年龄人脸识别算法.该方法创新性地将方向梯度直方图(Histogram of Oriented Gradient,HOG)和中心对称局部二值模式(Center Symmetric Local Binary Pattern,CSLBPS)组合方法用于人脸图像特征提取,获得包含结构和强度信息的图像融合特征,然后使用二叉树对特征信息进行降维,降维特征作为深度信念网络的可视层输入量,弥补深度新信念网络无法达到图像局部特征要求的缺陷.通过训练好的深度网络模型对测试样本进行学习,在深度信念网络的最顶层对特征进行分类识别.实验结果表明,该方法能高精度实现人脸识别,且与其他方法比较,该方法性能优于其他方法,说明该方法具有可行性和有效性. Aiming at the problem of low recognition accuracy in face recognition,a cross-age face recognition algorithm based on deep learning has been proposed.In this method innovatively,the combination of Histogram of Oriented Gradient(HOG)and Center Symmetric Local Binary Pattern(CSLBPS)has been conducted for face image feature extraction and the image fusion features been obtained including the structure and intensity information,and then the binary tree been used to feature the features.The dimensionality reduction feature has been used as the visual layer input of the deep belief network,which makes up for the defect that the depth of the new belief network cannot meet the local features of the image.The test samples have been learned through the trained deep network model,and the features been classified and identified at the top level of the deep belief network.The experimental results show that the proposed method can realize face recognition with high precision,and compared with other methods,the performance of this method is better than other methods,which shows the feasibility and effectiveness of the proposed method.
作者 胡渝苹 HU Yu-ping(Big Data Institute,Chongqing Water Resources and Electric Engineering College,Chongqing 402160,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2020年第3期115-120,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市教委科学技术研究项目(KJ1603701).
关键词 方向梯度直方图 中心对称局部二值模式 二叉树 深度信念网络 跨年龄人脸识别 Histogram of Oriented Gradient Central Symmetric Local Binary Pattern Binary Tree Deep Belief Network Cross-Age Face Recognition
  • 相关文献

参考文献2

二级参考文献17

  • 1Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31(2):210-227. 被引量:1
  • 2Zhang Lei,Yang Meng,Feng Xiangchu.Sparse representation or collaborative representation:which helps face recognition?[C]//Proc of International Conference on Computer Vision.2011. 被引量:1
  • 3Yang Jian,Zhang Lei,Xu Yong,et al.Beyond sparsity:the role of L1-optimizer in pattern classification[J].Pattern Recognition,2012,45(3):1104-1118. 被引量:1
  • 4Deng Weihong,Hu Jiani,Guo Jun.Extended SRC:undersampled face recognition via intraclass variant dictionary[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2012,34(9):1864-1870. 被引量:1
  • 5Wagner A,Wright J,Ganesh A,et al.Toward a practical face recognition system:robust alignment and illumination by sparse representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2012,34(2):372-386. 被引量:1
  • 6Gao Shenghua,Tsang I W H,Chia L T.Sparse representation with kernels[J].IEEE Trans on Image Processing,2013,22(2):423-434. 被引量:1
  • 7Zhang Li,Zhou Weida,Chang P C,et al.Kernel sparse representation-based classifier[J].IEEE Trans on Signal Processing,2012,60(4):1684-1695. 被引量:1
  • 8Zhang Shiqing,Zhao Xiaoming.Locality-sensitive kernel sparse representation classification for face recognition[J].Journal of Visual Communication and Image Representation,2014,25(8):1878-1885. 被引量:1
  • 9Rigamonti R,Brown M A,Lepetit V.Are sparse representations really relevant for image classification?[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition.2011:1545-1552. 被引量:1
  • 10Li Wei,Tramel E W,Prasad S,et al.Nearest regularized subspace for hyper-spectral classification[J].IEEE Trans on Geoscience and Remote Sensing,2014,52(1):477-489. 被引量:1

共引文献6

同被引文献47

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部