期刊文献+

信息熵加权的HOG特征提取算法研究 被引量:24

Research on HOG Feature Extraction Algorithm Weighted by Information Entropy
下载PDF
导出
摘要 针对人脸图像中不同部位所含的信息熵不同,对识别的影响程度不同等因素,提出了一种信息熵加权的HOG特征提取方法。该算法将待识别的人脸图像进行分块,对分块后的图像进行HOG特征提取,计算每块图像所含的信息熵作为权重系数加到各个分块中形成新的HOG特征,通过PCA算法对特征进行降维,得到信息熵加权的HOG特征。通过在ORL和YALE实验结果表明,该算法相较于其他传统识别方法具有更高的识别精度和准确度,并且对于人脸在光照、姿态表情等干扰因素下均具有良好的有效性和鲁棒性。 According to the different information entropy in different parts of face image,the influence of different factors on the recognition degree are different,this paper proposes an information entropy weighted HOG feature extraction method.The facial image to be identified is divided into blocks,HOG feature extraction on the block of the image,and then this paper calculates the information entropy of each image contained as weight coefficient to each block in the formation of new HOG features,the features are reduced by PCA algorithm,and the HOG features of information entropy weighting are obtained.The contrast experiment on ORL and YALE shows that this method not only has higher recognition accuracy than other traditional recognition methods,but also has good robustness and effectiveness for transforms of illumination,face pose and expression.
作者 林克正 张元铭 李昊天 LIN Kezheng;ZHANG Yuanming;LI Haotian(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第6期147-152,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61501147) 黑龙江省自然科学基金(No.F2015040)
关键词 人脸识别 特征提取 信息熵 梯度直方图(HOG) 主成分分析(PCA) face recognition feature extraction information entropy Histogram of Oriented Gradients(HOG) Principal Component Analysis(PCA)
  • 相关文献

参考文献6

二级参考文献36

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2王保平,刘怀亮,李南京,谢维信.一种新的自适应图像模糊增强算法[J].西安电子科技大学学报,2005,32(2):307-313. 被引量:23
  • 3宗晓萍,徐艳,董江涛.多信息融合的模糊边缘检测技术[J].物理学报,2006,55(7):3223-3228. 被引量:14
  • 4CHUAN Xian Ren, et al. Incremental Learning of Bidirectional Principal Components for Face Recognition [ J ]. PattemRecogni- tion, 2010, 43 : 318 - 330. 被引量:1
  • 5DAUGMAN J. Complete Discrete 2-D Gabor Transform by Neural Networks for Image Analysis and Compression [ J ]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1998, 36 (7) : 1169 - 1179. 被引量:1
  • 6KWANG In Kim; KEECHUL Jung; HANG Joon Kim. Face Rec- ognition Using Kernel Principal Component Analysis [ J ]. IEEE Signal Processing Letters, 2002, 9(2) : 40 -42. 被引量:1
  • 7庄德文.周德龙,王宪保.基于Gahor变换的每类单个训练样本人脸识别研究[J].计算机应用,2009,26(6):2379-2382. 被引量:1
  • 8YAMBOR W S. Analysis of Pca-based and Fisher Discriminant- based Image Recognition Algorithms, CS- 00- 103, Computer Science[ R]. Colorado State University, 2000: 7. 被引量:1
  • 9Reshmalakshmi C,Sasikumar M.Image contrast enhancement using fuzzy technique[C] //Proc of International Conference on Circuits,Power and Computing Technologies.[S.l.] :IEEE Press,2013:861-865. 被引量:1
  • 10Pal S K,Kind R A.Image enhancement using fuzzy sets[J].Electronics Letters,1980,16(10):376-378. 被引量:1

共引文献26

同被引文献275

引证文献24

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部