期刊文献+

城市潜力地段共享停车位资源需求预测仿真 被引量:2

Network Data Encryption Transmission Information Protection Method Simulation
下载PDF
导出
摘要 当前停车位资源需求预测方法对城市潜力地段停车位资源分布均匀性差,导致共享停车位资源需求预测误差较大、可信度较低等问题。针对上述问题提出一种基于灰色算法的共享停车位资源需求预测方法,计算共享停车时间转变参数、出行吸引参数、区位因子参数和出行方式调节参数。利用灰度灰色算法构建非畸形模型,将参数结果代入最小二乘法中获取指标矩阵,利用该矩阵计算拟合值,得到城市潜力地段共享停车位资源需求的预测结果。实验结果证明,所提方法能够提高共享停车位资源需求预测准确率,保证了方法的可信度。 Currently,the distribution of parking space resources in urban potential location is not uniform,leading to large prediction error and low reliability of resource demand for shared parking space.Therefore,a method to fore-cast resource demand for shared parking space based on grey algorithm was proposed.This method calculated the time transformation parameters of sharing parking,the trip attraction parameters,the location factor parameters and the travel mode adjustment parameters.Then,our method used grayscale algorithm to construct a non-deformed model,and then took the parameter result into the least square method to obtain the index matrix.In addition,the method used this matrix to calculate the fitting value.Finally,we obtained the prediction result of resource demand for shared parking space in urban potential location.Simulation results show that the proposed method can improve the accuracy of resource demand predication for shared parking space and ensure the credibility.
作者 秦亚莘 吴海燕 QIN Ya-xin;WU Hai-yan(Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
机构地区 北京建筑大学
出处 《计算机仿真》 北大核心 2020年第1期421-424,共4页 Computer Simulation
基金 北京建筑大学研究生创新项目(PG2018005)。
关键词 城市 共享停车位 需求预测 准确率 误差率 Share parking space Demand predication Accuracy rate Error rate
  • 相关文献

参考文献10

二级参考文献83

  • 1张飞飞,吴兵,李林波.新城区CBD区域停车需求预测方法[J].重庆交通大学学报(自然科学版),2012,31(5):1018-1022. 被引量:6
  • 2关宏志,王鑫,王雪.停车需求预测方法研究[J].北京工业大学学报,2006,32(7):600-604. 被引量:63
  • 3采峰,曾凤章.产品需求量非平稳时序的ANN-ARMA预测模型[J].北京理工大学学报,2007,27(3):277-282. 被引量:4
  • 4王丰元,邹旭东,阎岩,李洪民,张洪海.基于用地和交通特征的停车需求预测模型[J].交通运输工程学报,2007,7(2):84-88. 被引量:22
  • 5玛丽·史密斯.共享式停车场设计与管理[M].王莹,译.沈阳:辽宁科学技术出版社,2007. 被引量:6
  • 6Qian Ling, Luo Zhiguo, Du Yujian, et al. Cloud computing: an overview[J]. Lecture Notes in Com- puter Science, 2009, 5931(1): 626-631. 被引量:1
  • 7Wu Hesheng, Wang Chongjun, Xie Junyuan. Tera Scaler ELB-an algorithm of prediction-based elastic load balancing resource management in cloud compu- ting[C]//Proc of International Conference on Ad- vanced Information Networking and Applications Workshops. Piscatway: IEEE, 2013:649-654. 被引量:1
  • 8Hu Dandan, Chen Ningjiang, Dong Shilong, et al. A user preference and service time mix-aware resource provisioning trategy for multi-tier cloud services [C]//Proc of AASRI Conference on Parallel and Dis- tributed Computing Systems. Amsterdam.. Elsevier BV, 2013:235-242. 被引量:1
  • 9Xiao Zhen, Song Weijia, Chen Qi. Dynamic resource allocation using virtual machines for cloud computing environment[J]. IEEE Transaction on Parallel and Distributed Systems, 2013, 24(6) : 1107-1117. 被引量:1
  • 10Ramezani F, Lu Jie, Hussain F. An online fuzzy de- cision support system for resource management in cloud environments[C]//Proc of IFSA World Con- gress and NAFIPS Annual Meeting. Piscatway:IEEE, 2013: 754-759. 被引量:1

共引文献88

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部