期刊文献+

一种半监督机器学习的EM算法改进方法 被引量:3

Improved EM Algorithm of Semi-supervised Machine Learning
下载PDF
导出
摘要 EM(Expectation Maximization)算法是含有隐变量(latent variable)的概率参数模型最大似然估计、极大后验概率估计最有效的算法,但很容易进入局部最优现象,对此提出基于半监督机器学习机制的EM算法.本文方法是在最大似然函数中加入惩罚最小二乘因子,同时引入非负约束作为先验信息,结合半监督机器学习方法,将EM算法改进转化为最小化求解问题,再采用最大似然方法求解EM模型,有效估计了混合矩阵和高斯混合模型参数,实现EM算法的改进.仿真结果表明,该方法能够很好地解决了EM算法容易局部最优化问题. EM algorithm is the most effective algorithm for maximum likelihood estimation and maximum posteriori probability estimation of probability parameter model with latent variable,but it is easy to enter the local optimum phenomenon.An EM algorithm based on semi-supervised machine learning is proposed.The least squares penalty term is added to the maximum likelihood function,non-negative constraints are introduced as a priori information,and combined with semi-suervised machine learning method,the improved EM algorithm is transformed into a minimization problem.The maximum likelihood algorithm is used to solve the EM model,effectively estimating the parameters of the mixed matrix and the Gaussian mixed model,and the improvement of the EM algorithm is realized.The simulation results show that this method can solve the problem of EM algorithm easily entering local optimum well.
作者 夏筱筠 张笑东 王帅 罗金鸣 崔露露 赵智阳 XIA Xiao-jun;ZHANG Xiao-dong;WANG Shuai;LUO Jin-ming;CUI Lu-lu;ZHAO Zhi-yang(Shenyang Institute of Computing Technology,Chinese Academy of Science,Shenyang 110168,China;University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Engineering,Shenyang 110136,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第2期230-235,共6页 Journal of Chinese Computer Systems
基金 国家科技重大专项课题项目(2017ZX04011004)资助 国家自然科学基金项目(61803271)资助.
关键词 半监督机器学习 EM算法 改进分析 局部最优 semi-supervised machine learning EM algorithm improvement analysis local optimum
  • 相关文献

参考文献9

二级参考文献80

共引文献36

同被引文献45

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部