期刊文献+

基于正则化的函数连接神经网络研究及其复杂化工过程建模应用

Regularization based functional link neural network and its applications to modeling complex chemical processes
下载PDF
导出
摘要 在化工过程的建模中,由于过程数据的高维度和高非线性,导致计算量大幅提升和建模难度加大。为了解决这一问题,提出了一种基于正则化方法的函数连接神经网络模型(regularization based functional link neural network, RFLNN)。所提出的RFLNN方法里,通过使用正则化的方法对函数连接神经网络的权值进行优化,一方面大幅降低网络计算复杂度和计算量,另一方面极大程度上克服网络局部极值和过拟合的问题,以提高函数连接神经网络的学习速度和精度。为了验证所提出方法的有效性,首先采用UCI数据中Real estate valuation数据对其性能进行测试;随后将所提的方法应用于高密度聚乙烯(high density polyethylene,HDPE)复杂生产过程进行建模。UCI标准数据与工业数据的仿真结果表明,与传统FLNN对比,RFLNN在处理高维复杂化工过程数据时具有收敛速度快、建模精度高等特点。 In the modeling of chemical process, due to the high dimensionality and non-linearity of the process data, the calculation amount is greatly increased and the modeling difficulty is increased. In order to solve this problem, a regularization based functional link neural network(RFLNN) is proposed. In the proposed RFLNN method, there are two salient features through using the regularization method:on one hand, computing complexity and the amount of calculation are greatly reduced;on the other hand, the problem of local extreme values and overfitting is effectively avoided. As a result, the performance in terms of accuracy and learning speed of functional neural network is much improved. In order to verify the effectiveness of the proposed RFLNN method, firstly, an UCI dataset called Real estate valuation is selected;then the proposed RFLNN method is used to develop a model for the complex production process of high density polyethylene(HDPE). Compared with the conventional functional link neural network(FLNN), simulation results of the selected UCI data and industrial data show that the proposed RFLNN can achieve not only fast convergence speed but also high accuracy in processing complex chemical process data.
作者 贺彦林 田业 顾祥柏 徐圆 朱群雄 HE Yanlin;TIAN Ye;GU Xiangbai;XU Yuan;ZHU Qunxiong(College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China;Engineering Research Center of Ministry of Education,Beijing 100029,China;Sinopec Engineering Group Co.,Ltd.,Beijing 100101,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第3期1072-1079,共8页 CIESC Journal
基金 国家自然科学基金项目(61703027,61533003)。
关键词 神经网络 正则化 过程建模 高密度聚乙烯 neural network regularization process modeling high density polyethylene
  • 相关文献

参考文献5

二级参考文献49

  • 1傅初黎,李洪芳,熊向团.不适定问题的迭代Tikhonov正则化方法[J].计算数学,2006,28(3):237-246. 被引量:33
  • 2吕久旭,吴乐南.基于函数连接型神经网络的非线性滤波[J].长春工业大学学报,2006,27(4):305-307. 被引量:2
  • 3张伟国,刘飞.神经网络在异亮氨酸发酵建模中的应用[J].无锡轻工大学学报,1996,15(2A):121-124. 被引量:1
  • 4[2]LETIT1A MIREA, TEODOR MARCU. System identification using functional-link neural Networks with dynamics tructure[EO/AC]. http://magic. uni-duisburg. de/files_downloads/IFAC02_LM_TM_2111. pdf,2003-12-2. 被引量:1
  • 5[3]ANGEL LOPEZ-GOMEZ,SHINICHI YOSHIDA,KAORU HIROTA. Fuzzy functional link network and its application to the representation of the extended kolmogorov theorem[J]. International Journal of Fuzzy System, 2002,4 (2): 690-695. 被引量:1
  • 6MartinTHagan 戴葵译.Neural Network Design[M].北京:机械工业出版社,2002.227. 被引量:14
  • 7飞思科技产品研发中心.Matlab 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2004.. 被引量:6
  • 8Pao Y H.Adaptive pattern recognition and neural networks[M].Reading:Addison-Wesley,1989. 被引量:1
  • 9Simon Haykin.Adaptive signal processing[M].Bellingham:Wash.SPIE,1991. 被引量:1
  • 10Huizhuo Shi,Yuehua Gao,Xicheng Wang.Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method[J]. The International Journal of Advanced Manufacturing Technology . 2010 (9-12) 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部