期刊文献+

State of charge estimation by finite difference extended Kalman filter with HPPC parameters identification 被引量:15

State of charge estimation by finite difference extended Kalman filter with HPPC parameters identification
原文传递
导出
摘要 State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to estimate the SOC. The finite difference(FD) algorithm is benefit to compute the partial derivative of nonlinear function, which can reduce the linearization error generated by the extended Kalman filter(EKF). The FDEKF algorithm can reduce the computational load of controller in engineering practice without solving the Jacobian matrix. It is simple of dynamic model of lithium-ion battery to adopt a secondorder resistor-capacitor(2 RC) network, the parameters of which are identified by the HPPC. Two conditions, both constant current discharge(CCD) and urban dynamometer driving schedule(UDDS), are utilized to validate the FDEKF algorithm.Comparing convergence rate and accuracy between the FDEKF and the EKF algorithm, it can be seen that the former is a better candidate to estimate the SOC. State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to estimate the SOC. The finite difference(FD) algorithm is benefit to compute the partial derivative of nonlinear function, which can reduce the linearization error generated by the extended Kalman filter(EKF). The FDEKF algorithm can reduce the computational load of controller in engineering practice without solving the Jacobian matrix. It is simple of dynamic model of lithium-ion battery to adopt a secondorder resistor-capacitor(2 RC) network, the parameters of which are identified by the HPPC. Two conditions, both constant current discharge(CCD) and urban dynamometer driving schedule(UDDS), are utilized to validate the FDEKF algorithm.Comparing convergence rate and accuracy between the FDEKF and the EKF algorithm, it can be seen that the former is a better candidate to estimate the SOC.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第3期410-421,共12页 中国科学(技术科学英文版)
基金 supported by the National Key Research and Development Program of China(Grant No.2017YFB0103100) the Science and Technology Special Project of Anhui Province(Grant No.18030901063)
关键词 state of charge lithium-ion battery parameters identification finite difference algorithm extended Kalman filter state of charge lithium-ion battery parameters identification finite difference algorithm extended Kalman filter
  • 相关文献

参考文献3

二级参考文献23

共引文献105

同被引文献109

引证文献15

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部