期刊文献+

EKF交互多模型算法在目标跟踪的应用 被引量:7

Application of EKF Interacting Multiple Model Algorithm in Target Tracking
下载PDF
导出
摘要 针对移动目标跟踪过程中,传感器感知信息存在噪声以及运动轨迹突变导致目标观测失真甚至丢失的问题,提出了一种扩展卡尔曼滤波交互多模型算法(EKF-IMM)。该算法以交互多模型算法为主体,同时融入EKF算法做滤波处理,使得在目标跟踪过程中,不仅对目标的不同运动状态具有自适应能力,同时还能对运动状态中可能的非线性问题做更好的处理,提高算法的鲁棒性。仿真实验表明,EKF-IMM算法能很好得适应多变的目标运动,与标准KF-IMM算法相比,该算法降低了噪声对传感器的干扰,提高了定位精度。 Aiming at the problem that interferences of noise on the sensor information and motion trajectory of target observation mutations lead to distortion or even loss in the process of target tracking,proposes an extended Kalman filter interacting multiple model algorithm(EKF-IMM).The algorithm takes the interacting multiple model algorithm as the main part and integrates the EKF algorithm into the filtering process.In the process of target tracking,not only has the adaptive ability to different moving states of the target,but also can better deal with the possible nonlinear problems in the motion states,and improve the robustness of the algorithm.Simulation results show that the EKF-IMM algorithm can well adapt to changing target motion.Compared with the standard KF-IMM algorithm,this algorithm can reduce the noise interference and improve the positioning accuracy.
作者 高春艳 董鹏 高涵 王辉强 GAO Chun-yan;DONG Peng;GAO Han;WANG Hui-qiang(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出处 《机械设计与制造》 北大核心 2020年第2期284-287,共4页 Machinery Design & Manufacture
基金 国家高技术研究发展计划(863计划)(No.2015AA043101)
关键词 目标跟踪 噪声 轨迹突变 扩展卡尔曼滤波 交互多模型 定位精度 Target Tracking Noise Motion Trajectory Extended Kalman Filter Interacting Multiple Model Loca-tion Accuracy
  • 相关文献

参考文献7

二级参考文献30

  • 1刘宏伟,杜兰,袁莉,保铮.雷达高分辨距离像目标识别研究进展[J].电子与信息学报,2005,27(8):1328-1334. 被引量:71
  • 2成光,刘卫东,魏尚俊,张蕊.基于卡尔曼滤波的目标估计和预测方法研究[J].计算机仿真,2006,23(1):8-10. 被引量:9
  • 3方青,梅晓春,张育平.用于机动目标跟踪的Kalman滤波器的设计[J].雷达科学与技术,2006,4(1):50-55. 被引量:21
  • 4Douglas M B,Watts Donald G.非线性回归分析及其应用[M].韦博成,万方焕,朱启图译.北京:中国统计出版社,1997:36-37. 被引量:3
  • 5Liu H,Bao Z.Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel[J].Lecture Notes in Computer Science,2004,3174(1):531-536. 被引量:1
  • 6Chen Bo,Liu Hongwei,Bao Zheng.Optimizing the data-dependent Kernel under a unified Kernel optimization framework[J].Pattern Recognition,2008,41(6):2107-2119. 被引量:1
  • 7Saito N,Beylkin G.Multiresolution representation using the auto-correlation functions of compactly supported wavelets[J].IEEE Trans.on Signal Processing,1993,41(12):3584-3590. 被引量:1
  • 8Chen G Y,Gregory D.Auto-correlation wavelet support vector machine and its applications to regression[C] // Proc.of the Second Canadian Conference on Computer and Robot Vision,2005:246-252. 被引量:1
  • 9Bui T D,Chen G Y,Feng L.An orthonormal-shell-Fourier descriptor for rapid matching of patterns in image database[J].International Journal of Pattern Recognition and Artifical Intelligence,2001,15(8):1213-1229. 被引量:1
  • 10Micha(e)l van A W.A framework for multiscale and hybrid RKHS-based approximators[J].IEEE Trans.on Signal Processing,2000,48(12):3559-3568. 被引量:1

共引文献31

同被引文献58

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部