期刊文献+

基于主成分分析的粒子滤波器目标跟踪方法 被引量:6

Particle Filter Algorithm Based on Principal Component Analysis
下载PDF
导出
摘要 提出一种基于主成分分析的粒子滤波器目标跟踪新方法.该方法将主成分分析法和传统的粒子滤波方法相结合,避免了传统粒子滤波器的过度重采样,提高了目标跟踪精度.实验结果表明,该方法对单个目标跟踪精度高,且对多障碍物下的目标跟踪精度也较高,适用于复杂背景下的人脸跟踪.与传统粒子滤波方法相比,该方法提高了目标跟踪的精度和鲁棒性,避免了粒子退化和粒子贫化. A new principal component analysis particle filter algorithm proposed in this paper combines principal component analysis method with the traditional particle filter method. The proposed method avoids undue resampling and improves the accuracy of object tracking. Experimental results demonstrate that this algorithm can acquire better precision in single object tracking and multiple- obstacle object tracking, and this algorithm could track human face accurately in complex backgrounds. Compared with present particle filter algorithm, this algorithm performs better in robustness and accuracy and avoids particle degeneration and particle impoverishment.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第6期1156-1162,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60905022) 吉林省科技发展计划项目(批准号:201105016)
关键词 目标跟踪 粒子滤波算法 主成分分析法 重采样 object tracking particle filter algorithm principal component analysis resampling
  • 相关文献

参考文献20

  • 1Ihor S, Katharina D, Niels G, et al. Particle Filtering for Multiple Object Tracking in Dynamic Fluorescence Microscopy Images: Application to Microtubule Growth Analysis [J]. IEEE Transactions on Medical Imaging, 2008, 27(6): 789-803. 被引量:1
  • 2Arulampalam M S, Maskell S, Gordon N J, et al. A Tutorial on Particle Filters for Online Nonlinear/Non Gaussian Bayesian Tracking [J]. IEEE Trans on Signal Process, 2002, 50(2): 174-187. 被引量:1
  • 3Hammersley J M. Monte Carlo Methods [M]. New York: Methuen's Monographs, 1964. 被引量:1
  • 4Cappe B O, Godsill S J, Moulines E. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo [J]. IEEE Proceedings, 2007, 95(5): 899-921. 被引量:1
  • 5Nicholas M, Ulam S. The Monte Carlo Method [J]. Journal of the American Statistical Association, 1949, 44(247) 335-341. 被引量:1
  • 6Sang H P, Kim Y, Hoocheol L, et al. Improved Adaptive Particle Filter Using Adjusted Variance and Gradient Data [C]//Proeeedings of IEEE International Conference on Multi-sensor Fusion and Integration for Intelligent Systems. Seouh IEEE, 2008: 650-655. 被引量:1
  • 7Rubin D. Using the SIR Algorithm to Simulate Posterior Distributions in Bayesian Statistics [M]. Oxford: Oxford University Press, 1988. 被引量:1
  • 8Robert C, Casell/t G. Monte Carlo Statistical Methods [M]. Berlin: Springer-Verlag, 1999. 被引量:1
  • 9FU Xiao-yan, JIA Ying-ming. An Improvement on Resampling Algorithm of Particle Filters [J]. IEEE Transac- tions on Signal Processing, 2010, 58(10):5414-5420. 被引量:1
  • 10Liu J S, Chen R. Sequential Monte Carlo Methods for Dynamic Systems[J].Journal of the American Statistical Association, 1998, 93(443): 1032-1044. 被引量:1

二级参考文献5

  • 1[1]YILMAZ A,JAVED O,SHAH M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4):1-45. 被引量:1
  • 2[2]YANG C J,DURAISWAMI R,DAVIS L.Fast multiple object tracking via a hierarchical particle filter[C]// Proceedings of the Tenth IEEE International Conference on Computer Vision.Beijing,China,2005:212-219. 被引量:1
  • 3[4]WU Y.Robust visual tracking by integrating multiple cues based on co-inference learning[J].International Journal of Computer Vision,2004,58(1):55-71. 被引量:1
  • 4[7]VIOLA P,JONES M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,52(2):137-154. 被引量:1
  • 5[8]NUMMIAROK,KOLLER M E,VAN G L.Object tracking with an adaptive color-based particle filter[C]//Proc of the Symposium for Pattern Recognition of the DAGM.Switzerland,2002:353-360. 被引量:1

共引文献5

同被引文献76

  • 1欧阳继红,王仲佳,刘大有.具有动态加权特性的关联规则算法[J].吉林大学学报(理学版),2005,43(3):314-319. 被引量:16
  • 2Daum F. Nonlinear filters: beyond the Kalman filter[ J]. IEEE AES Systems Magazine, 2005, 20( 8 ) : 57 - 69. 被引量:1
  • 3Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applica- tions to tracking and navigation [ M ]. New York : Wiley & Sons, 2001:157 - 163. 被引量:1
  • 4Gelb A. Applied optimal estimation [ M ]. Cambridge: the MIT Press, 1974:567 - 590. 被引量:1
  • 5Julier S J, Uhlmann J K, Durrant W H. A new approach for fihe- ring nonlinearing systems [ C ]//Proceedings of the American Con- trol Conference. Seattle, WA:IEEE,1995 : 1628 - 1632. 被引量:1
  • 6Norgaard M, Poulsen N K, Ravn O. New development in state es- timation for nonlinear systems[ J]. Automatica, 2000, 36 ( 11 ) : 1627 - 1638. 被引量:1
  • 7范炜,李勇.Sigma点卡尔曼滤波方法精度分析[C]∥2009Chinese Control and Decision Conference, 2009 : 2883 - 2888. 被引量:2
  • 8Lefebvre T, Bruyninckx H, Schutter J. Kalman filter for nonli- near systems: a comparison of performance [ J ]. International Journal of Control, 2004, 77(7) : 639 -653. 被引量:1
  • 9Dunfk J, Simandl M, Straka O, et al. Performance analysis of derivative-free filters[ C]///Proceedings of the 44th IEEE Confer- ence on Decision and Control. Seville: IEEE, 2005:1941 - 1946. 被引量:1
  • 10Lee D J. Nonlinear Bayesian filtering with applications to estima- tion and navigation[ D]. Texas:Texas A&M University, 2005. 被引量:1

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部