期刊文献+

优化形式下的稀疏表示分类器的人脸识别 被引量:5

Sparse Representation-Based Classification Under Optimization Forms for Face Recognition
下载PDF
导出
摘要 针对稀疏表示分类(sparse representation-based classification,SRC)算法在噪声、遮挡或者光照变化等情况下面部图像识别率较差的问题,对SRC模型进行算法优化,将L1损失函数替代L2损失函数用以求解稀疏解,并且采用L1范数和L2范数对L1损失函数最小化问题进行正则化。在3个具有挑战性的人脸数据集中挑选不同的光照、表情和遮挡条件时的人脸图像,并适当地加入噪声,分析在不同数据条件下SRC优化模型的性能,进而研究正则化参数在数据样本与稀疏性之间的修正关系。实验结果表明:所提出的两种SRC优化模型在不同的数据库和样本间具有不一样的性能,L1损失函数与L1正则化的组合在噪声条件时表现突出,L1损失函数与L2正则化的组合在遮挡条件下具有更高的鲁棒性。 Aiming at the problem that the facial image recognition rate is poor in sparse representation-based classification( SRC) algorithms in noise,occlusion,or lighting changes,this article optimizes the SRC model to replace the L1 loss function with the L1 loss function. In order to solve the sparse solution, L1 norm and L2 norm are used to regularize the L1 loss function minimization problem. In this paper,face images under different lighting,expression and occlusion conditions are selected from three challenging face data sets,and the noise is appropriately added to analyze the performance of SRC optimization model under different data conditions,so as to study the correction relationship between regularization parameters and sparsity of data samples. The experimental results show that the two SRC optimization models proposed in this paper have different performances in different databases and samples. The combination of L1 loss function and L1 regularization is prominent in noise condition,and the combination of L1 loss function and L2 regularization is more robust in occlusion condition.
作者 吉朝明 宋铁成 JI Chaoming;SONG Tiecheng(Department of Information Engineering,Sichuan Vocational and Technical College of Communications,Chengdu 611130,China;Department of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第2期120-126,共7页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(61702065) 四川省教育信息化应用与发展研究中心项目(JYXX18-030)
关键词 人脸识别 稀疏表示 优化算法 范数正则化 face recognition sparse representation optimization algorithm norm regularization
  • 相关文献

参考文献3

二级参考文献56

  • 1张跃飞,姜玉亭,王建英,尹忠科.基于稀疏分解的图像压缩[J].系统工程与电子技术,2006,28(4):513-515. 被引量:11
  • 2Mei Xue, Ling Haibin. Robust visual tracking using L1 minimization [C] //Proc of lnt Conf on Computer Vision. Los Alamitos, CA: IEEE Computer Society, 2009:1436-1433. 被引量:1
  • 3Mei Xue, Ling Haibin. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011, 33 ( 11 ) : 2259-2272. 被引量:1
  • 4Liu Baiyang, Yang Lin, Huang Junzhou, et al. Robust and fast collaborative tracking with two stage sparse optimization [C] //Proc of European Conf on Computer Vision. Berlin: Springer, 2010:624-637. 被引量:1
  • 5Liu Baiyang, Huang Junzhou, Yang Lin, et al. Robust visual tracking with local sparse appearance model and selection [C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2011:1-8. 被引量:1
  • 6Mei Xue, Ling Haibin, Wu Yi, et al. Minimum error bounded efficient Ⅱ tracker with occlusion detection [C] // Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2011:1257-1264. 被引量:1
  • 7Li Hanxi, Shen Chunhua, Shi Qinfeng. Real-time visual tracking with compressing sensing [C] //Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2011:1305-1312. 被引量:1
  • 8Bao Chenglong, Wu Yi, Ling Haibin, et al. Real time robust 11 tracker using accelerated proximal gradient approach [C] // Proc of IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2012:1830-1837. 被引量:1
  • 9Guo Yanwen, Chen Ye, Tang Feng, et al. Object tracking using learned feature manifolds [J]. Computer Vision and Image Understanding, 2014, 118 : 128-139. 被引量:1
  • 10Li Ang, Tang Feng, Guo Yanwen, et al. Discriminative nonorthogonal binary subspace tracking [G] //LNCS 6313: Proc of the llth European Conf on Computer Vision. Berlin: Springer, 2010:258-271. 被引量:1

共引文献16

同被引文献26

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部