摘要
The capture operation performed by a snare-type end-effector mainly relies on three flexible cables.This paper solves the dynamics modeling problems of flexible cable used in the snare-type end-effector and provides a contact tracking control strategy for the impact phase of snare capture.To describe the motion of flexible cable,a dynamics model is established by considering both tensile and bending resistance properties.On this basis,a virtual spring concept is introduced to represent the contact between flexible cables and the target grapple shaft,and a contact dynamics model is established approximately by polynomial function with the variables of penetration and start-end distance of flexible cable.Thereafter,a contact tracking control strategy is proposed to improve the reliability of space snare capture.The target grapple shaft and flexible cable can keep in contact at the initial contact point during the whole capture process and thus reduce the possibility of pushing the target away.Experiments are carried out to verify the effectiveness of the proposed method.
The capture operation performed by a snare-type end-effector mainly relies on three flexible cables. This paper solves the dynamics modeling problems of flexible cable used in the snare-type end-effector and provides a contact tracking control strategy for the impact phase of snare capture. To describe the motion of flexible cable,a dynamics model is established by considering both tensile and bending resistance properties. On this basis,a virtual spring concept is introduced to represent the contact between flexible cables and the target grapple shaft,and a contact dynamics model is established approximately by polynomial function with the variables of penetration and start-end distance of flexible cable. Thereafter,a contact tracking control strategy is proposed to improve the reliability of space snare capture. The target grapple shaft and flexible cable can keep in contact at the initial contact point during the whole capture process and thus reduce the possibility of pushing the target away. Experiments are carried out to verify the effectiveness of the proposed method.
基金
supported by the National Natural Science Foundation of China (Nos.11672294, 61903354)