期刊文献+

Shape control of spacecraft formation using a virtual spring-damper mesh 被引量:3

Shape control of spacecraft formation using a virtual spring-damper mesh
原文传递
导出
摘要 This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecraft are connected virtually by spring-damper pairs. Convergence analysis is performed using the energy method. Approximate expressions for the distance errors and control accelerations at steady state are derived by using algebraic graph representations and results of graph rigidity. Analytical results indicate that if the underlying graph of the mesh is rigid, the convergence to a static shape is assured, and higher formation control precision can be achieved by increasing the elastic coefficient without increasing the control accelerations. A numerical example of spacecraft formation in low Earth orbit confirms the theoretical analysis and shows that the desired formation shape can be well achieved using the presented method, whereas the orientation of the formation can be kept pointing to the center of the Earth by the gravity gradient. The method is decentralized, and uses only relative measurement information. Constructing a distributed virtual structure in space can be the general application area. The proposed method can serve as an active shape control law for the spacecraft formations using propellantless internal forces. This paper derives a distance-based formation control method to maintain the desired formation shape for spacecraft in a gravitational potential field. The method is an analogy of a virtual spring-damper mesh. Spacecraft are connected virtually by spring-damper pairs. Convergence analysis is performed using the energy method. Approximate expressions for the distance errors and control accelerations at steady state are derived by using algebraic graph representations and results of graph rigidity. Analytical results indicate that if the underlying graph of the mesh is rigid, the convergence to a static shape is assured, and higher formation control precision can be achieved by increasing the elastic coefficient without increasing the control accelerations. A numerical example of spacecraft formation in low Earth orbit confirms the theoretical analysis and shows that the desired formation shape can be well achieved using the presented method, whereas the orientation of the formation can be kept pointing to the center of the Earth by the gravity gradient. The method is decentralized, and uses only relative measurement information. Constructing a distributed virtual structure in space can be the general application area. The proposed method can serve as an active shape control law for the spacecraft formations using propellantless internal forces.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1730-1739,共10页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 61273351 and 61673390)
关键词 Formation shape control Graph rigidity Internal forces PD control Spacecraft formation flying Spacecraft guidance and control Spring-damper mesh Formation shape control Graph rigidity Internal forces PD control Spacecraft formation flying Spacecraft guidance and control Spring-damper mesh
  • 相关文献

同被引文献4

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部