期刊文献+

一种信道状态信息下的复杂动态手势识别方法 被引量:4

Complex Dynamic Gesture Recognition Method Based on Channel State Information
下载PDF
导出
摘要 传统动态手势识别方法中存在硬件成本高,推广难度大等局限性.文章提出一种基于信道状态信息的复杂动态手势识别方法CSI-Num,该方法可用来实现对空中数字手势的高效识别.CSI-Num识别过程主要分为两个阶段:数据提取处理阶段与手势匹配识别阶段.提取处理阶段,是将采集到的数据,选取能够反映手势动作的子载波特征值作为被选信号,通过小波阈值函数和五点三次平滑方法对信号进行降噪平滑;匹配识别阶段,提取有效手势数据,使用k均值聚类算法和动态时间规整算法特性相融合的K-DTW匹配算法识别出不同数字的手势动作.实验结果表明,针对不同环境的室内场景,相应地调整参数设置,CSI-Num可以高效地识别出不同数字的手势动作,且具有较高鲁棒性. The traditional dynamic gesture recognition method has some limitations,such as high hardware cost and difficulty in popularizing.The paper proposes a complex dynamic gesture recognition method CSI-Num,based on channel state information,which can realize the efficient recognition of digital gestures in the air.The process of CSI-Num recognition consists of two stages:data extraction processing and gesture matching recognition.In the stage of extracting and processing,the acquired data is selected as the selected signal,and by wavelet threshold function and five-spot triple smoothing method make the signal de-noised and smooth.In the phase of matching recognition,the valid gesture data is extracted,and using the K-DTW matching algorithm(combined k-means clustering algorithm and the characteristics of Dynamic Time Warping)can recognize the gesture actions with different numbers.The experimental results showthat CSI-Num can efficiently recognize different digital gestures and is robust to different indoor scenes and adjust the parameters accordingly.
作者 党小超 刘洋 郝占军 曹渊 DANG Xiao-chao;LIU Yang;HAO Zhan-jun;CAO Yuan(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China;Gansu Province Internet of Things Engineering Research Center,Lanzhou 730070,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第1期200-205,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61762079,61662070)资助 甘肃省科技重点研发项目(17YF1GA015)资助
关键词 信道状态信息 复杂动态手势识别 子载波 K-DTW channel state information complex dynamic gesture recognition subcarrier K-DTW
  • 相关文献

参考文献8

二级参考文献90

  • 1朱继玉,王西颖,王威信,戴国忠.基于结构分析的手势识别[J].计算机学报,2006,29(12):2130-2137. 被引量:26
  • 2WU K,XIAO J, YI Y, et al. FILA: Fine-grained indoor localization [ C]//IEEE INFOCOM. 2012:2210 - 2218. 被引量:1
  • 3WILSON J, PATWARI N. See-through walls : Motion tracking using variance-based radio tomography networks [ J ]. IEEE Transactions on Mobile Computing, 2011,10 (5) : 612 -621. 被引量:1
  • 4NERGUIZIAN C, NERGUIZIAN V. Indoor fingerprinting geolocation using wavelet-based features extracted from the channel impulse response in conjunction with an artificial neural network [ C ]//IEEE International Symposium on Industrial Electronics. 2007 : 2028 - 2032. 被引量:1
  • 5PATWARI N, KASERA S K. Robust location distinction using temporal link signatures [ C ]//ACM MobiCom. 2007 : 111 - 122. 被引量:1
  • 6ZHANG J, FIROOZ M H, PATWARI N, et al. Advancing wireless link signatures for location distinction [ C ]//ACM MobiCom. 2008:26 -37. 被引量:1
  • 7HALPERIN D, HU W, SHETH A, et al. Tool release: Gathering 802. 1 I n traces with channel state information [ J ]. ACM SIGCOMM Computer Communication Review,2011, 41(1) :53 -53. 被引量:1
  • 8YANG Z, ZHOU Z, LIU Y. From RSSI to CSI : Indoor localization via channel response [ J ]. ACM Computing Survey, 2013,46(2) :25. 被引量:1
  • 9HALPERIN D, HU W, SHETH A, et al. 802.11 with multiple antennas for dummies [ J ]. ACM SIGCOMM Computer Communication Review,2010,40( 1 ) : 19 - 25. 被引量:1
  • 10YOUSSEF M, MAH M, AGRAWALA A. Challenges:Device-free passive localization for wireless environments [ C ]//ACM MobiCom. 2007:222 - 229. 被引量:1

共引文献63

同被引文献22

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部