摘要
利用能量守恒定理以及傅里叶定律,建立了大线能量焊接热模拟试件的导热微分方程。首先,以有限元分析法为基础,对三维空间离散化,并根据一维、二维有限差分法传热方程推导出了三维有限差分法传热方程。然后,在分析Gleeble-3500热模拟试验机加热原理的,设定了升温阶段以及保温阶段的第一类边界条件。最后,应用中的PDE.对方程,了温以及保温过程中的传热规律。
The energy conservation theoiy and Fourier's law are used ty establish the thermal differential equation of the high heat input welding thermal simulation specimens.Firstly,based on the finCe element analysis method,the three-dimensional space is discretized,and the three-di mensional finite difference method heat transfer equation is derived based on the one-dimensional and two-dimensional finite dCferencc method heat transfer equations.Then,undeo the premise of analyzing the heating principle of Gleeble-3500 thermal sirnulation tester,the first type of boundary conditions of the heating phase and the heat preservation phase are set.FinUe,the PDE toolbox in Matlab is used to solve the equa tion,which shows the heat transfer law during the heating and heat preservation process.
作者
李矗东
魏强
李玉中
黄宏虎
LI Chudong;WEI Qiang;LI Yuzhong;HUANG Honghu(Xinxing Ductile Iron Pipes Co.Ltd.,Beijing 100026,China;Donlinks School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China)
出处
《工业加热》
CAS
2020年第1期1-4,8,共5页
Industrial Heating
基金
国家自然科学基金资助项目(51874116)
关键词
大线能量焊接
焊接热模拟
有限元分析
有限差分法
high heat input welding
welding thermal sirnulation
finite element analysis
finite difference method