期刊文献+

基于DCNN的证件照人脸验证及应用研究

Face Verification and Application Research of ID Photos Based on DCNN
下载PDF
导出
摘要 在不同证件审核场景中,由于存在年龄跨度、装扮及样本缺乏等因素的影响,使得现有方法难以适应不同证件照下的人脸识别,无法满足实际应用要求。为解决上述问题,提出一种基于深度卷积神经网络的不同证件照识别方法。该方法对VGG网络做出适应于不同证件照识别的改进,实现端到端的自主学习人脸特征,消除年龄跨度、装扮等因素的影响,并且可将训练参数减少为原网络结构的1/6,使得在保证识别精度的同时,模型训练时间大幅减小。实验结果表明,该方法在高校毕业审核场景下的自建数据集和CAS-PEAL-R1公开数据集上训练后,验证准确率和召回率较原始方法分别提高了6.29个百分点和7个百分点,能够满足多种应用场景下的不同证件审核需求。 In different authentication scenarios,it is difficult to adapt the existing methods to face recognition under different authentication photos for the sake of the influence of age span,dress-up and lack of samples,which cannot conform to the practical application requirements.For the sake of solving the above problems,it puts forward a different identification method on the basis of the deep convolution neural network.This method makes the improvement of VGG network adapted to different document photo recognition,realizing end-to-end autonomous learning of face features,eliminating the influence of age span,dress-up and other factors.In addition,the method cuts down the trainable parameters to 1/6 of the original network structure,thus ensuring the identification accuracy while greatly reducing the training time of the model.According to the experimental results,after training on the self-built data set and CAS-PEAL-R1 public data set under the college graduation examination scene,the verification accuracy and recall rate of this method were 6.29 and 7 percentage points higher than the original method respectively,which can conform to the different document examination needs under various application scenarios.
作者 李硕 卞青山 刘传文 刘鸣涛 张林涛 LI Shuo;BIAN Qing-shan;LIU Chuan-wen;LIU Ming-tao;ZHANG Lin-tao(School of Information Science and Engineering,Linyi University,Linyi 276000,China;Academic Affair Office,Linyi University,Linyi 276000,China)
出处 《计算机与现代化》 2020年第2期104-109,共6页 Computer and Modernization
基金 临沂大学博士启动研究基金资助项目(LYDX2016BS115,LYDX2016BS114)
关键词 人脸识别 证件审核 卷积神经网络 人脸验证 face recognition ID photo verification convolutional neural network face verification
  • 相关文献

参考文献10

二级参考文献28

  • 1马晓燕,杨国胜,范秋凤,王应军.基于Gabor小波和支持向量机的人脸识别算法中若干问题研究[J].计算机与现代化,2007(4):20-23. 被引量:1
  • 2Rujirakul K, SoIn C, Arnonkijpanich B, et al. PFPPCA: Parallel fixed point PCA face recognition[C]// 2013 the 4th International Conference on Intelligent Systems Modelling & Simulation (ISMS). 2013:409-414. 被引量:1
  • 3Zhang Ping. A video-based face detection and recognition system using cascade face verification modules[C]// The 37th IEEE Applied Imagery Pattern Recognition Workshop, 2008. 2008:1-8. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001,1:I-511-I-518. 被引量:1
  • 5Freund V, Schapire R E. A short introduction to boosting[J]. Journal of Japanese Society for Artifical Intelligence, 1999,14(5):771-780. 被引量:1
  • 6Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991,3(1):71-86. 被引量:1
  • 7Kshirsagar V P, Baviskar M R, Gaikwad M E. Face recognition using eigenfaces[C]// Proceeding of IEEE International Conference on Computer Research and Development. 2011:302-306. 被引量:1
  • 8Rob Farber. CUDA Application Design and Development[M]. Massachusetts: Morgan Kaufmann, 2011:2-16. 被引量:1
  • 9Ali U, Bilal M. Video based parallel face recognition using Gabor filter on homogeneous distributed systems[C]// 2006 IEEE International Conference on Engineering of Intelligent Systems. 2006:1-5. 被引量:1
  • 10Crow F C. Summedarea tables for texture mapping[C]// ACM SIGGRAPH ’84 Proceedings of the 11th Annual Conference Computer Graphics and Interactive Techniques. 1984,18(3):207-212. 被引量:1

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部