期刊文献+

飞机目标分类的深度卷积神经网络设计优化 被引量:3

Design and Optimization of Deep Convolutional Neural Network for Aircraft Target Classification
原文传递
导出
摘要 针对使用传统方法和神经网络对飞机目标分类时遇到的准确率低、分类种类少等问题,研究了深度卷积神经网络(DCNN)在飞机目标分类中的可行性。为了匹配模型容量、避免过拟合、提高分类性能等,设计了9层DCNN模型,并使用随机梯度下降优化器进行优化。在数据集中选用6类具有代表性的飞机类型进行实验,提出两种正则化级联方式以防止过拟合并加快模型收敛,最终实现了99.1%的飞机分类准确率,由此说明该DCNN模型在飞机目标分类中的有效性。通过归一化混淆矩阵分析分类结果,给出了每类飞机自分类的准确率。此外,设计了一组对比实验,用经典的AlexNet在同一数据集上进行测试,结果表明,所设计的DCNN的准确率高于AlexNet分类算法95.5%。该模型有效地解决了飞机目标分类精度低的问题,在军事和民航飞机目标的分类研究中具有一定的参考价值和应用前景。 Aiming at the problems of low classification accuracy and less classification types in the classification for aircraft targets by using conventional methods and neural networks,the feasibility of deep convolutional neural network(DCNN)models is studied.To match model capacity,avoid overfitting,and improve classification performance,a nine-layer DCNN model is designed and optimized with stochastic gradient descent optimizer.Six representative types of aircrafts are selected in the dataset,and two regularization cascade methods are proposed to prevent overfitting and speed up the model convergence.Finally,an aircraft classification accuracy of 99.1% is achieved,which demonstrates the effectiveness of the DCNN model in aircraft target classification.By analyzing the classification results of the normalized confusion matrix,the accuracy of the self-classification of each type of aircraft is given.In addition,agroup of comparative experiments are designed to test the same dataset with the classic AlexNet.The results show that the proposed DCNN model is superior to the AlexNet classification algorithm with an accuracy improvement of 95.5%.This model effectively solves the problem of low accuracy in aircraft target classification at present and proves that the DCNN model has certain reference values and application prospects in the classification research of military and civil aviation aircraft targets.
作者 马俊成 赵红东 杨东旭 康晴 Ma Juncheng;Zhao Hongdong;Yang Dongxu;Kang Qing(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第23期108-115,共8页 Laser & Optoelectronics Progress
基金 光电信息控制和安全技术重点实验室基金(614210701041705)
关键词 图像处理 深度卷积神经网络 飞机目标 图像分类 高分类精度 归一化混淆矩阵 image processing deep convolutional neural network aircraft target image classification high classification accuracy normalized confusion matrix
  • 相关文献

参考文献10

二级参考文献55

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107. 被引量:35
  • 3边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000.. 被引量:67
  • 4张元鹏,董海.计算机图像处理技术基础[M].北京:北京大学出版社,1996:112-115. 被引量:2
  • 5John Platt.How to Implement SVMs[J].IEEE Inteligent System,1998. 被引量:1
  • 6Baatz M, Schape A. Object - oriented and multi - scale image anal- ysis in semantic networks [ C]//Proeeedings of the 2nd Interna- tional Symposium on Operationalization of Remote Sensing, En- schede, Netherlands, 1999 : 16 - 20. 被引量:1
  • 7Kim M, Madden M, Warner T. Estimation of optimal image object size for the segmentation of forest stands with muhispectral IKO- NOS imagery [ C ]//Object - Based Image Analysis. Thomas Blas- chke, Stefan Lang and Geoffrey J Hay ,2008:291 - 307. 被引量:1
  • 8eCognition Developer Trim 8.0 Reference Book [ M/CD ]. Germa- ny : Definiens, 2009. 被引量:1
  • 9战国科,夏哲雷.基于支持向量机的飞机图像识别算法[J].现代电子技术,2007,30(21):127-129. 被引量:6
  • 10陈洪京.几种生物识别方法的比较研究[J].河北省科学院学报,2007,24(4):33-37. 被引量:14

共引文献172

同被引文献23

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部