期刊文献+

基于LSTM神经网络的降雨天旅行时间预测研究 被引量:14

Travel Time Prediction Based on LSTM Neural Network in Precipitation
下载PDF
导出
摘要 降雨给城市道路行程时间的计算和预测带来了许多不确定因素.以出租车GPS数据为研究对象,在考虑降雨数据的基础上,设计一个基于非最小路段的行程时间计算方法,建立基于LSTM(Long Short-Term Memory)循环神经网络的行程时间预测模型进行算法验证.最后,以北京市中关村西区出租车行驶的10 d的GPS数据进行方法验证.结果表明,加入降雨特征预测的结果比未加入降雨特征拥有更高的准确率.并与应用较为广泛的BP神经网络和SVM进行对比分析,发现在满足数据精度的前提下,本文应用的算法和预测模型有较高的训练速度和预测可靠性. The precipitation brings many uncertainties to calculation and prediction of travel time in urban road.This paper used GPS data of taxi as the research,considered the precipitation data and then designed a travel time calculation method based on non-minimum section.Meanwhile,we had established a travel time prediction model based on the LSTM(Long Short-Term Memory)to verification the algorithm.Finally we used 10 days GPS data which is from taxi in zhongguancun west of Beijing to verify the method.The results show that the prediction results with rainfall characteristics are more accurate than those without.Compared with BP neural network and SVM witch are widely used,the algorithm and prediction model in our paper has higher training speed and prediction reliability under the premise of satisfying the accuracy.
作者 王志建 李达标 崔夏 WANG Zhi-jian;LI Da-biao;CUI Xia(Beijing Key Lab of Urban Intelligent Traffic Control Technology,North China University of Technology,Beijing 100144,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第1期137-144,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(61503006) 北京市自然科学基金(8172018) 北京市教委基础科研计划项目(110052971921/023)~~
关键词 智能交通 旅行时间 LSTM神经网络 浮动车 降雨量 intelligent transportation travel time LSTM neural network floating car precipitation
  • 相关文献

参考文献3

二级参考文献22

共引文献39

同被引文献87

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部