摘要
研究评价信息为勾股模糊偏好关系(PFPR)的群决策问题。融合勾股模糊集与偏好关系提出PFPR的概念,并定义PFPR之间的相容测度。以直觉模糊偏好关系的理论框架为基础,提出积性一致性PFPR(MCPFPR)与标准化勾股模糊优先权重向量(PFPWV),并提供PFPWV构造MCPFPR的具体公式。为获取任意给定餡PFPR的优先权重向量.以其与MCPFPR偏差最小、权重不确定程度最低为目标建立规划模型。进一步,将模型拓展成可以构造理想MCPFPR的整体目标规划模型,利用理想MCPFPR与个体PFPR之间的相容测度获取专家权重。针对专家权重未知的PFPR群决策问题,基于所提的目标规划模型与简单勾股模糊加权几何(SPFWG)算子提出一种群决策方法。通过解决大数据分析平台的评价问题验证所提方法的有效性和实用性。
The Group Decision-making problem with Pythagorean fuzzy preference relation(PFPR)is studied.The Pythagorean fuzzy sets and preference relation are combined to propose the concept of Pythagorean fuzzy preference relation,and the compatibility measure for Pythagorean fuzzy preference relations is defined.Based on the theoretical framework of intuitionistic fuzzy preference relation,the multiplicative consistent Pythagorean fuzzy preference relation(MCPFPR)and normalized Pythagorean fuzzy priority weight vector(PFPWV)are proposed,and a conversion formula is provided to convert this PFPWV into the MCPFPR.For any given PFPR,a goal programming model is developed to obtain its priority weight vector by minimizing its deviation from the MCPFPR and minimizing the indeterminacy of the priority weight vector.Furthermore,this model is extended to develop an overall goal programming model,which is used to construct an ideal MCPFPR,a nd the compatibility measure between the ideal MCPFPR and the in dividual PFPR is applied to obtain the weight vector of experts.For the PFPR Group Decision-making problem without weight information,based on the proposed goal programming models and the simple Pythagorean fuzzy weighted geometric(SPFWG)operator,a Group Decision-making method is developed.Finally,the effectiveness and practicability of the proposed group decision method are verified by solving the evaluation problem of the large data analysis platform.
作者
杨艺
余绍黔
任剑
YANG Yi;YU Shao-qian;REN Jian(Institute of Big Data and Internet Innovation,Key Laboratory of Hunan Province for New Retail Virtual Reality Technology,Hunan University of Commerce,Changsha 410205,China)
出处
《模糊系统与数学》
北大核心
2019年第6期114-129,共16页
Fuzzy Systems and Mathematics
基金
国家社会科学基金资助项目(15BJY163)
湖南省自然科学基金资助项目(2018JJ2201
2018JJ2198)
湖南工商大学青年驱动项目(19QD03)
关键词
勾股模糊偏好关系
积性一致性
目标规划模型
群决策
Pythagorean Fuzzy Preference Relation
Multiplicative Consistent
Goal Programming Model
Group Decision-making