期刊文献+

再议普通最小二乘法下回归系数的性质 被引量:5

Further Discussion on Properties of Regression Coefficient Under Ordinary Least Square Method
下载PDF
导出
摘要 文章从个体的角度探讨最小二乘法下的估计系数的形成过程,得出一元回归中的回归系数是各个数据点上的回归系数以Epanechnikov核函数进行加权形式的。并在此基础上,推广到多元线性回归,多元线性回归的估计系数本质上为一种参数结构,它是以自变量的协方差矩阵为联系纽带,将回归系数分解为偏回归系数,将两个系数结合起来澄清目前计量经济学和统计学的一些问题。 This paper discusses the formation process of the estimated coefficient under the least square method from the perspective of individuals,and concludes that the regression coefficient in unitary regression is the regression at each data point weighted by the Epanechnikov kernel function,and on this basis,it is generalized to multiple linear regression,whose estimated coefficient is essentially a parameter structure,which takes the covariance matrix of the independent variables as the link,decomposing the regression coefficient into partial regression coefficient,and combining the two coefficients to clarify some of the current problems in econometrics and statistics.
作者 伍兴国 雷钦礼 Wu Xingguo;Lei Qinli(Dongguan Polytechnic,Dongguan Guangdong 523808,China;College of Economics,Jinan University,Guangzhou 510632,China)
出处 《统计与决策》 CSSCI 北大核心 2020年第1期10-14,共5页 Statistics & Decision
基金 东莞职业技术学院院级科研基金资助项目(政201811)
关键词 最小二乘法 协方差矩阵 偏回归系数 结构突变 效用 least square method covariance matrix partial regression coefficient structural mutation utility
  • 相关文献

参考文献3

二级参考文献51

  • 1徐传胜,吕建荣.亚伯拉罕·棣莫弗的概率思想与正态概率曲线[J].西北大学学报(自然科学版),2006,36(2):339-343. 被引量:14
  • 2LANCASTER H O.Encyclopedia of statistical science[J].New York:Wiley,1988. 被引量:1
  • 3HACKING I.The Taming of Chance[M].Cambridge:Cambridge University Press,1990. 被引量:1
  • 4COHEN I B.Revolution in Science[M].Cambridge:The Belknap Press of Harvard University Press,1985. 被引量:1
  • 5PLACKETT R L.The Discovery of the method of Least Squares[J].Biometrika,1972,(59):239-251. 被引量:1
  • 6STIGLER S M.The History of Statistics[M].Cambridge:Harvard University Press,1986:94-96. 被引量:1
  • 7TODHUNTER I.A History of the Mathematical of theory of probability from the times of pascal to that of Laplace[M].New York:Chelsea,1965:482-517. 被引量:1
  • 8SHEYNIN O B.GAUSS C F and the theory of Error[J].Archive for History of Exact Science,1979,(20):21-72. 被引量:1
  • 9WATERHOUSE W C.Gauss's first argument for least squares[J].Archive for history of Exact Science 1991,(41):41-52. 被引量:1
  • 10VICTOR J K.数学史通论[M].李文林,译.北京:高等教育出版社,2004:586-588. 被引量:2

共引文献272

同被引文献56

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部