期刊文献+

基于灰色理论和BP神经网络的高耸构筑物拆除费用预测 被引量:1

Prediction of demolition cost of high-rise structures based on grey theory and BP neural network
下载PDF
导出
摘要 为提升高耸构筑物拆除费用估算的准确性,应用灰色理论和BP神经网络算法建立模型对拆除费用进行估算.结合工程案例,对比分析了采用该模型获得的高耸构筑物拆除费用与实际工程造价之间的差别.结果表明,本文提出的模型能够有效降低拆除价格估算结果的平均误差,可以显著提高拆除费用计算精度,进而获得合理的拆除费用,为拆除工程提供概预算参考依据,具有一定的理论意义和实践价值. In order to improve the accuracy of the demolition cost estimation of high-rise structures,the gray theory and BP neural network algorithm are used to establish a model to estimate the demolition cost.Combined with the project case,the difference between the demolition cost of high-rise structures obtained by using the model and the actual project cost is analyzed.The results show that the model proposed in this paper can effectively reduce the average error of demolition price estimation results,significantly improve the accuracy of demolition cost calculation and obtain reasonable demolition cost,and provide a reference basis for the demolition project budget,which has certain theoretical significance and practical value.
作者 王勃 王皓 董丽欣 WANG Bo;WANG Hao;DONG Li-xin(School of civil engineering,Jilin Jian zhu university,Changchun 130118,China;Earthquake resistance technology innovation center of Jilin province,Changchun 130118,China)
出处 《吉林建筑大学学报》 2019年第6期1-6,12,共7页 Journal of Jilin Jianzhu University
基金 国家重点研发计划项目(2017YFC0806100) 国家自然科学基金项目(51178206) 吉林省高校“十三五”科研规划项目(JJKH20170253KJ)
关键词 拆除工程 拆除费用 灰色理论 反向传播(BP)神经网络 demolition project cost of demolition grey theory back propagation(BP)neural network
  • 相关文献

参考文献8

二级参考文献44

共引文献172

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部