期刊文献+

融合表情符号与短文本的微博多维情感分类 被引量:11

Multi-dimensional sentiment classification of microblog based on Emoticone and short texte
下载PDF
导出
摘要 表情符号已成为网络语言重要组成部分,是分析社交媒体情感的主要特征之一.目前分析社交媒体情感符号的方法多针对Emoji,对颜文字的情感倾向没有相应分析.为获取中文媒体的多维度情感并分析热点话题的群体情感走向,本文以微博为例提出一种新的融合表情符号与短文本的多维情感分类方法.在该框架中,采用深度学习模型分析文本与Emoii组合部分、颜文字部分,分别计算两部分的7种情感强度,挖掘各部分与情感标签的深层次关联,并设计计算模型语的多维情感属性,实现对语句多维情感强度的检测.实验选择NLPCC2014数据集和爬取的带有颜文字的微博数据集进行验证,实验证明当文本与Emoji组合、颜文字占比分别为0.6和0.4时情感分类效果最好,且含颜文字的语句情感分类性能指标始颜文字的语句,这表融合表情符号和短文本的有效提情感度.该方法为群体情感提供度的分析,为中文社交媒体的情感分析提供了新思路. Emoticons have become an important component of network language and is one of the main characteristics of the analysis of social media sentiment.The current social media sentiment analysis methods most focus on Emoji,while there is no study on the sentiment trend of kinesics.In order to obtain the multi-dimensional sentiment polarity of Chinese social media and analyze the group sentiment trend on hot topics,this paper proposes a new multi-dimensional sentiment classification method based on deep learning,which combines Emoticons with short texts.In this framework,the text and Emoji combination and the kinesics in microblog sentences were analyzed using deep learning model,and seven sentiment intensities of the two parts were obtained to explore the correlation between each part and sentiment labels.Then,a computational model was designed to reflect the multi-dimensional sentiment polarity contained in microblog sentences,which can realize the detection of the multi-dimensional sentiment intensity of sentences.The experiment utilized the NLPCC2014 dataset and the crawled microblog dataset contaiming kinesics for verification.Results show that when the proportion of the text and Emoji combination and the kinesics were 0.6 and 0.4,the effect of sentiment classification was the best.The sentiment classification performance indicator of the sentences containing kinesics was always higher than that without kinesics,which indicates that the combination of Emoticon and short texts can effectively improve the accuracy of microblog sentiment detection.The experiment provides a more fine-grained analysis for group sentiment trend and a new idea for Chinese social media sentiment analysis.
作者 赵晓芳 金志刚 ZHAO Maofang;JIN Zhigang(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2020年第5期113-120,共8页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(71502125)。
关键词 情感分类 Emoji 颜文字 深度学习 sentiment classification Emoji kinesics deep learming
  • 相关文献

参考文献5

二级参考文献44

  • 1徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:56
  • 2林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 3Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183. 被引量:1
  • 4Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392. 被引量:1
  • 5Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576. 被引量:1
  • 6许小颖,陶建华.汉语情感系统中情感划分的研究[C].第一届中国情感计算及智能交互学术会议论文集.2003:199-205. 被引量:7
  • 7Ekman P. An argument for basic emotions [ J]. Cognition and Emotion, 1992, 6: 169-200. 被引量:1
  • 8郑怀德,孟庆海.汉语形容词用法词典[M].北京:商务印书馆,2004. 被引量:2
  • 9Hugo Liu, Henry Lieberman, Ted Selker. A model of textual affect sensing using real-world knowledge [ C ] .Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 125-132. 被引量:1
  • 10Hugo Liu, Ted Selker, Henry Lieberman. Visualizing the affective structure of a text document [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2003 : 740-741. 被引量:1

共引文献545

同被引文献75

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部