期刊文献+

中国碳强度关键影响因子的机器学习识别及其演进 被引量:30

Identifying the key factors influencing Chinese carbon intensity using machine learning, the random forest algorithm,and evolutionary analysis
原文传递
导出
摘要 碳强度影响因子数量众多,通过在众多因子中评估其重要性以识别出关键影响因子进而解析碳强度关键因子的变化规律,是中国2030年碳强度能否实现比2005年下降60%~65%目标的科学基础。传统的回归分析方法对于评估众多因子的重要性存在多重共线性等问题,而机器学习处理海量数据则具有较好的稳健性等优点。本文从能源结构、产业结构、技术进步和居民消费等方面选取了56个中国碳强度影响因子指标,采用随机森林算法基于信息熵评估了1980-2014年逐年各项因子的重要性,通过指标数量与信息熵的对应关系统一筛选出每年重要性最大的前22个指标作为相应年度关键影响因子,最终依据关键影响因子的变化趋势划分了3个阶段作了演进分析。结果发现:1980-1991年,碳强度的关键因子主要以高耗能产业规模及占比、化石能源占比和技术进步为主;1992-2007年,中国经济进入快车道增长时期,服务业占比和化石能源价格对碳强度的影响作用开始显现,居民传统消费的影响作用在增大;2008年全球金融危机后,中国进入经济结构深化调整时期,节能减排力度大大增强,新能源占比和居民新兴消费的影响作用迅速显现。为实现2030年碳强度下降60%~65%目标,优化能源结构和产业结构,促进技术进步,提倡绿色消费,强化政策调控是未来需要采取的主要措施。 As the Chinese government ratified the Paris Climate Agreement in 2016,the goal of reducing carbon dioxide emissions per unit of gross domestic product(carbon intensity)from60%to 65%of 2005 levels must now be achieved by 2030.However,as numerous factors influence Chinese carbon intensity,it is key to assess their relative importance in order to determine which are most important.As traditional methods are inadequate for identifying key factors from a range acting simultaneously,machine learning is applied in this research.The random forest(RF)algorithm based on decision tree theory was proposed by Breiman(2001);this algorithm is one of the most appropriate because it is insensitive to multicollinearity,robust to missing and unbalanced data,and provides reasonable predictive results.We therefore identified the key factors influencing Chinese carbon intensity using the RF algorithm and analyzed their evolution between 1980 and 2014.The results of this analysis reveal that dominant factors include the scale and proportion of energy-intensive industries as well as fossil energy proportion and technical progress between 1980 and 1991.As the Chinese economy developed rapidly between 1992 and 2007,effects on carbon intensity were enhanced by service industry proportion and the fossil fuel price such that the influence of traditional residential consumption also increased.The Chinese economy then entered a period of deep structural adjustment subsequent to the 2008 global financial crisis;energy-saving emission reductions were greatly enhanced over this period and effects on carbon intensity were also rapidly boosted by the increasing availability of new energy and its residential consumption.Optimization of energy and industrial structures,promotion of technical progress,green consumption,and the reduction and management of emissions will be key to cutting future carbon intensity levels within China.These approaches will all help to achieve the 2030 goal of reducing carbon emission intensity from 60%to 65%of 2005 levels
作者 刘卫东 唐志鹏 夏炎 韩梦瑶 姜宛贝 LIU Weidong;TANG Zhipeng;XIA Yan;HAN Mengyao;JIANG Wanbei(Natural Resources Research,CAS,Beijing 100101,China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China;Institute of Science and Development,CAS,Beijing 100190,China)
出处 《地理学报》 EI CSSCI CSCD 北大核心 2019年第12期2592-2603,共12页 Acta Geographica Sinica
基金 国家重点基础研究发展计划(2016YFA0602804) 国家自然科学基金项目(41771135)~~
关键词 机器学习 随机森林 碳强度 关键影响因子 中国 machine learning random forest carbon intensity key factor China
  • 相关文献

参考文献14

二级参考文献211

共引文献577

同被引文献645

引证文献30

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部