期刊文献+

基于沈峻算子的引导滤波方法研究

Research on guided filtering method based on Shen-Castan operator
下载PDF
导出
摘要 针对超声图像附带大量噪声的问题,提出了一种基于沈峻算子(Shen-Castan)的引导滤波方法,采用边缘检测中的沈峻算子对引导滤波进行改进以减少滤波结果中的边缘光晕现象。沈峻算子可以对含噪图像进行边缘检测,将该边缘检测结果与原始图像叠加,获得边缘增强的引导图像,该图像将作为含噪图像的引导图像来进行引导滤波。仿真实验显示,基于沈峻算子的引导滤波方法在保持算法原有平滑降噪功能的基础上,客观评价标准如峰值信噪比与结构相似度也得到了提升。 To address the problem of a large amount of noise attached to the ultrasound image, a guided filtering method based on Shen-Castan operator is proposed. The guided filtering is improved by using the Shen-Castan operator in edge detection to reduce edge halo phenomenon in filtering results. Shen-Castan operator is applied to conduct edge detection on the noisy image. The detection result is superimposed on the original image to obtain an edge enhanced guide image, which will be used as a guided image of the noisy image for guided filtering. The simulation experiment shows that the guided filtering method based on the Shen-Castan operator maintains the original smooth noise reduction function of the algorithm, and the objective evaluation criteria such as peak signal-to-noise ratio and structural similarity are also improved.
作者 邢奕楠 刘建宾 XING Yinan;LIU Jianbin(Computer School,Beijing Information Science&Technology University,Beijing 100101,China;Software Engineering Research Center,Beijing Information Science&Technology University,Beijing 100101,China)
出处 《北京信息科技大学学报(自然科学版)》 2019年第6期53-58,63,共7页 Journal of Beijing Information Science and Technology University
基金 北京信息科技大学科研水平提高项目(5211823406) 北京信息科技大学信息+学科建设项目(5111823414)
关键词 超声图像 引导滤波 边缘检测 沈峻算子 ultrasound image guided filtering edge detection Shen-Castan operator
  • 相关文献

参考文献2

二级参考文献24

  • 1YASMIN M, SHARIF M, MASOOD S, et al. Brain image enhance- ment-a survey [ J]. World Applied Sciences Journal, 2012, 17 (9) : 1192 - 1204. 被引量:1
  • 2NODES T, GALLAGHER N C. Median filters: some modifications and their properties [ J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1982, 30(5) : 739 -746. 被引量:1
  • 3ITO K, XIONG K. Ganssian filters for nonlinear filtering problems [ J]. IEEE Transactions on Automatic Control, 2000, 45(5) : 910 - 927. 被引量:1
  • 4TOMASI C, MANDUCHI R. Bilateral filtering for gray and color im- ages [ C]//Proceedings of the 1998 6th International Conference on Computer Vision. Piscataway: IEEE, 1998:839-846. 被引量:1
  • 5CHAUDHURY K N, SAGE D, UNSER M. Fast O(1) bilateral fil- tering using trigonometric range kernels [ J]. IEEE Transactions on Image Processing, 2011,20(12) : 3376 - 3382. 被引量:1
  • 6ZHANG B, ALLEBACH J P. Adaptive bilateral filter for sharpness enhancement and noise removal [ J]. IEEE Transactions on Image Processing, 2008, 17(5) :664 -678. 被引量:1
  • 7BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one [ J]. Muhiscale Modeling and Simula- tion, 2005,4(2) : 490 - 530. 被引量:1
  • 8MANJON J V, CARBONELL-CABALLERO J, LULL J J, et al. MRI denoising using non-local means [ J]. Medical Image Analysis, 2008, 12(4) : 514 - 523. 被引量:1
  • 9MANJON J V, COUPEP, MARTf-BONMATfL, et al. Adaptive non-local means denoising of MR images with spatially varying noise levels [J]. Journal of Magnetic Resonance Imaging, 2010,31 (1) : 192 -203. 被引量:1
  • 10DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [ J]. IEEE Transactions on Image Processing, 2007, 16(8) : 2080 - 2095. 被引量:1

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部