期刊文献+

一种基于卷积神经网络的人脸表情自动识别方法 被引量:3

An Automatic Facial Expression Recognition Method Based on Convolutional Neural Network
下载PDF
导出
摘要 针对传统机器学习方法在人脸表情识别上存在特征提取繁琐、表情识别准确率不高的问题,提出一种基于深度学习的人脸表情自动识别方法.设计了一个卷积神经网络模型,以原始图像数据为输入,中间以卷积层和池化层交替作为隐层进行特征自动提取,最后将提取到的特征数据映射到全连接层,并采用Softmax函数作为分类器计算分类得分概率,实现人脸表情的自动识别分类.在公开的人脸表情数据集CK+上进行实验,结果表明本文方法能更准确地识别人脸表情. In order to solve the problems of feature extraction and low accuracy of facial expression recognition in traditional machine learning methods,an automatic facial expression recognition method based on deep learning is proposed.We designed a convolutional neural network model,which took the original image data as input and the intermediate convolutional layer and pooling layer were alternately used as hidden layer for feature automatic extraction.Finally,the extracted feature data was mapped to the full connection layer and Softmax function was used as the classifier to calculate the classification score probability in order to realize the automatic recognition and classification of facial expressions.Experiments were carried out on the public face expression data set CK+,and the results show that this method can recognize face expression more accurately.
作者 邹建成 邓豪 ZOU Jiancheng;DENG Hao(Institute of Image Processing and Pattern Recognition,North China Univ.of Tech.,100144,Beijing,China)
出处 《北方工业大学学报》 2019年第5期51-56,共6页 Journal of North China University of Technology
基金 国家自然科学基金项目“微阵列相机动态场景的超分辨率和测量研究”(61572038)
关键词 表情识别 特征提取 深度学习 卷积神经网络 facial recognition feature extraction deep learning convolutional neural network
  • 相关文献

参考文献5

二级参考文献46

  • 1王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 2程剑,应自炉.基于二维主分量分析的面部表情识别[J].计算机工程与应用,2006,42(5):32-33. 被引量:9
  • 3薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 4TIAN Y, KANADE T, COHN J. Evaluation of Gabor wavelet-based facial action unit recognition in image sequences of increasing complexity [C] // Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. Washington: IEEE, 2002:26-30. 被引量:1
  • 5MULLER S, WALLHOFF F, HULSKEN F, et al. Facial expression recognition using pseudo 3-D hidden Markov models [C] // Proceedings of International Conference on Pattern Recognition. Quebec City : [ s. n. ], 2002:32 - 35. 被引量:1
  • 6ZHANG Y, JI Q. Active and dynamic information fusion for facial expression understanding from image sequences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(5) : 699 - 714. 被引量:1
  • 7KAPPOR A, QI Y, PICARD R W. Fully automatic upper facial action recognition [C] // Proceedings of Analysis and Modeling of Faces and Gestures. Nice, France: [s.n.], 2003: 195-202. 被引量:1
  • 8LIU C, SHUM H Y. Kullback-Leibler boosting [C] // Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin: IEEE, 2003 : 587 - 594. 被引量:1
  • 9BARTLETT M S, LITTLEWOET G, FRANK M, et al. Recognizing facial expression: machine learning and application to spontaneous behavior [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 568- 573. 被引量:1
  • 10PANTIC M, ROTHKRANTZ L. Facial action recognition for facial expression analysis from static face images [J]. IEEE Transactions on Systems, Man and Cybernetics:Part B, 2004, 34 (3) : 1449 - 1461. 被引量:1

共引文献388

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部