期刊文献+

双模态及语义知识的三维人脸表情识别方法 被引量:18

3D facial expression recognition method based on bimodal and semantic knowledge
下载PDF
导出
摘要 目前,人脸表情识别的主要研究对象是二维图像,它所包含的信息有限,而且易受人脸姿态、光照等影响。其次,人脸表情识别方法大多是基于图像低层视觉特征,而人类对图像的理解是基于高层语义知识,这两者之间存在本质上的差异,即"语义鸿沟"。为此,在三维人脸表情图像和语义知识的基础上,创新地提出双模态及语义知识的三维人脸表情识别方法。该方法首先提出一种将三维的局部曲率和二维局部角点进行双模态融合的方法,自动提取准确的三维人脸表情低层视觉特征;然后,采用AHP和G1相结合计算高层语义知识向量;最后,采用K-NN算法将低层视觉特征和高层语义知识融合,缩小低层视觉特征和高层语义知识之间的"语义鸿沟",提高人脸表情的识别率。 At present,the main research object of facial expression recognition is 2D image;it does not have enough information, and is vulnerable to the face pose, illumination and etc. Secondly, the facial expression recognition meth- ods are mostly based on low-level visual features of the image, but the human understanding of image is based on high-level semantic knowledge;there are essential differences between them, i. e. the "semantic gap". So, based on 3D facial expression image and semantic knowledge, a 3D facial expression recognition method is innovatively pro- posed based on bimoda] and semantic knowledge. Firstly, a method is proposed, which carries out the bimodal fusion of 3D local curvature and 2D local corner;and the method can extract the low-level visual features of 3D facial ex- pression automatically. Then a high-level semantic knowledge vector is calculated by combining AHP and G1. Finally, K-NN algorithm is adopted to fuse the low-level visual features and high-level semantic knowledge, narrow the "semantic gap" between the low-level visual features and high-level semantic knowledge, and increase the recogni- tion rate of facial expression recognition.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期873-880,共8页 Chinese Journal of Scientific Instrument
基金 福建省自然科学基金项目(2012J01260)资助
关键词 三维人脸表情识别 高层语义知识 低层视觉特征 K—NN 3D facial expression recognition high-level semantic knowledge low-level visual feature K-NN
  • 相关文献

参考文献17

  • 1YIN L J,WEI X ZH,SUN Y,et al. A 3D facia expression database for facial behavior research [ C ]. IEEE 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10-12, 2006: 211-216. 被引量:1
  • 2TANG H, HUANG T S. 3D facial expression recognition based on automatically selected features [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ,2008,6 : 1-8. 被引量:1
  • 3SOYEL H, DEMIREL H. Facial expression recognition using 3D facial feature distances [J]. ICIAR, 2008, 831-838. 被引量:1
  • 4SHA T,SONG M L,BU J J,et al. Feature level analysis for 3D facial expression recognition[ J]. Neurocomputing, 2011,74:2135-2141. 被引量:1
  • 5GUPTA S, MARKEY M K, BOVIK A C. Anthropometfic 3D face recognition [ J ]. Int. J. Comput. Vis. 2010, 90 ( 3 ) : 331-349. 被引量:1
  • 6胡步发,黄银成,陈炳兴.基于层次分析法语义知识的人脸表情识别新方法[J].中国图象图形学报,2011,16(3):420-426. 被引量:17
  • 7CHENG SH CH,CHEN M Y,CHOU T C,et al. Semantic- based facial expression recognition using analytical hierarchy process [ J ]. Expert Systems with Applications,2007, 33 ( 1 ) ,86-95. 被引量:1
  • 8HE B W, LIN Z M. An automatic registration algorithm for the scattered point clouds based on the curvature feature [J]. Laser Technology, 2012,4 (27) : 1-8. 被引量:1
  • 9叶长明,蒋建国,詹曙,S.Ando.不同姿态人脸深度图识别的研究[J].电子测量与仪器学报,2011,25(10):870-878. 被引量:19
  • 10刘宁,卢荣胜,夏瑞雪,李琪.基于高斯曲面模型的亚像素Harris角点定位算法[J].电子测量技术,2011,34(12):49-53. 被引量:4

二级参考文献69

  • 1孟照魁,崔佳涛,章博,杜新政.高精度光纤陀螺温度实验研究[J].宇航学报,2007,28(3):580-583. 被引量:20
  • 2卞鸿巍,金志华,杨艳娟,田蔚风.光纤陀螺温度漂移模型的PPLN辨识[J].上海交通大学学报,2004,38(10):1753-1756. 被引量:6
  • 3赖际舟,刘建业,盛守照.用于干涉型光纤陀螺温度漂移辨识的RBF神经网络改进算法[J].东南大学学报(自然科学版),2006,36(4):537-541. 被引量:9
  • 4Kim M, Lee H S, Jeong W P, et al. Determining color and blinking to support facial expression of a robot for conveying emotional intensity [ C ]// Proceedings of the 17th International Symposium on Robot and Human Interactive Communication. New Jersey: IEEE Computer Society, 2008: 219-224. 被引量:1
  • 5Lee K K, Xu Y. Real-time estimation of facial expression intensity [ C ]// Proceedings of the 2003 IEEE International Conference on Robotics and Automation. New York: IEEE lnc 2003 : 2567-2572. 被引量:1
  • 6Shishir Bashyal, Ganesh K Venayagamoorthy. Recognition of facial expressions using Gabor wavelets and learning vector quantization [ J ]. Engineering Applications of Artificial Intelligence, 2008,21 (7) : 1056-1064. 被引量:1
  • 7Geetha A, Ramalingam V, Palanivel S, et al. Facial expression recognition - a real time approach [ J ]. Expert Systems with Applications, 2009,36 (1) :303-308. 被引量:1
  • 8Abu Sayeed Md Sohail, Prabir Bhattacharya. Glassifying facial expressions using point-based analytic face model and Support Vector Machines [ C ]//Proceedings of the 2007 IEEE International Conference on Systems Man and Cybernetics. New York: IEEE Inc., 2007:1008-1013. 被引量:1
  • 9Zhang Yongmian, Ji Qiang, Zhu Zhiwei. Facial expression analysis and synthesis with MPEG-4 facial animation parameters [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(10) :1383-1395. 被引量:1
  • 10Aleksic P S, Katsaggelos A K. Automatic facial expression recognition using facial animation parameters and multistream HMMs[ J ]. IEEE Transactions on Information Forensics and Security, 2006,1 ( 1 ) :3-11. 被引量:1

共引文献55

同被引文献207

引证文献18

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部