期刊文献+

基于EEMD-SVM的液压泵故障诊断 被引量:4

Hydraulic pump fault diagnosis based on EEMD-SVM
下载PDF
导出
摘要 为提高利用液压泵振动信号进行故障诊断的准确率和减小诊断时间,采用集合经验模态分解(EEMD)的方式来提取振动信号特征,并将其作为液压泵故障诊断的数据集。在此基础上利用支持向量机(SVM)与深度神经网络(DNN)进行故障诊断,最后通过验证数据集检验模型诊断故障的准确程度。结果表明:EEMD-SVM在液压泵故障诊断方面具有较好的性能,与神经网络故障诊断模型相比,支持向量机模型在液压泵故障诊断方面具有更高的准确率和更短的诊断时间。 In order to improve the accuracy and reduce the diagnosis time of hydraulic pump fault diagnosis by using vibration signal, the ensemble empirical mode decomposition(EEMD) method is used to extract vibration signal characteristics, and it is used as the data set of hydraulic pump fault diagnosis. On this basis, a support vector machine(SVM) and deep neural network(DNN) are used for fault diagnosis. Finally, the accuracy of the model fault diagnosis is verified by validating data sets. The results show that EEMD-SVM has better performance in fault diagnosis of hydraulic pumps. Compared with the neural network fault diagnosis model, the support vector machine model has higher accuracy and shorter diagnosis time in fault diagnosis of hydraulic pumps.
作者 袁兵 余佳翰 邹永向 Yuan Bing;Yu Jiahan;Zou Yongxiang
出处 《起重运输机械》 2019年第20期90-95,共6页 Hoisting and Conveying Machinery
关键词 液压泵 集合经验模态分解 支持向量机 故障诊断 hydraulic pump collective empirical mode decomposition support vector machine fault diagnosis
  • 相关文献

参考文献7

二级参考文献72

  • 1周敏,湛从昌.液压泵故障诊断专家系统研究[J].武汉钢铁学院学报,1993,16(1):113-118. 被引量:5
  • 2周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14. 被引量:148
  • 3汤峰,陈跃华.模糊逻辑诊断方法在液压系统故障诊断中的应用[J].筑路机械与施工机械化,2007,24(5):56-58. 被引量:9
  • 4[1]Frawley W, Piatesky-Shapiro G, Matheus C. Knowledge discovery in databases: An overview[A]. Piatesky-shapiro G, Frawley W. Knowledge discovery in Databases[C]. Menlo Park CA:AAAI/MIT Press,1991. 被引量:1
  • 5[2]Koperski K, Han J. Discovery of spatial association rules in geographic information databases[Z]. Proc 4th Int'1 Symp on Large Information Databases (SSD'95), Maine, 1995. 被引量:1
  • 6[3]Guha Sudipto, Rajeev Rastogi, Kyuseok Shim. CURE: An efficient clustering algorithm for large databases[Z]. ACM SIGMOD International Conference on Management of Data, New York, 1998. 被引量:1
  • 7[4]Wang Wei, Jiong Yang, Muntz R. STRING: A statistical information grid approach to spatial data mining[Z]. The 23rd Very Large Databases Conference (VLDB1997), Athens, 1997. 被引量:1
  • 8[5]Zhang Tian, Raghu Ramakrishnan, Miron Livny. BIRCH: An efficient data clustering method for very large databases[Z]. ACM SIGMOD International Conference on Management of Data, Montreal, 1996. 被引量:1
  • 9[6]Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise[Z]. The 4th International Conference on Knowledge Discovery and Data Mining (KDD98), New York, 1998. 被引量:1
  • 10[7]Sheikholeslami Gholamhosein, Surojit Chatterjee, Zhang Aidong. WaveCluster: A multi-resolution clustering approach for very large spatial databases[Z]. The 24th Very Large Databases Conference (VLDB98), New York, 1998. 被引量:1

共引文献170

同被引文献30

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部