期刊文献+

云环境基于系统调用向量空间的进程异常检测 被引量:2

Process Abnormal Detection Based on System Call Vector Space in Cloud Computing Environments
下载PDF
导出
摘要 传统主机领域下基于系统调用的入侵检测方案,往往针对单一特权进程的运行行为进行监控,而在云计算环境下引入了更多的安全风险,采用主机入侵检测方案难以有效检测虚拟机进程异常行为,对此,提出了一种基于系统调用向量空间的虚拟机进程行为检测模型.模型采用了无代理监控技术透明的采集虚拟机进程系统调用数据,引入了TF-IDF(term frequency-inverse document frequency)算法思想为进程系统调用数据进行加权,用于区分租户虚拟机中运行的不同服务,识别异常进程行为.此外,为优化检测算法效率,设计了行格式存储法(compressed sparse row,CSR)稀疏矩阵与KD树(k-dimension tree)相结合的存储策略.最后在KVM(kernel-based virtual machine)虚拟化平台下设计并实现了VMPBD(virtual machine process behavior detecting)原型系统,针对Linux与Windows虚拟机进行了功能测试和性能测试.实验结果表明:VMPBD能有效检出虚拟机进程异常行为,检测误报率与系统性能开销在可接受范围以内. The intrusion detection scheme based on system call in the traditional host domain often monitors the running behavior of a single privileged process.It is difficult to effectively detect the abnormal process behavior of the virtual machine using the host intrusion detection scheme because of more security risks in the cloud computing environment.To break this limitation,a virtual machine process behavior detection model based on system call vector space is proposed.The model collects system call data of different operating system without using agent in the virtual machine.The TF-IDF(term frequency-inverse document frequency)algorithm idea is introduced to weight the process system call data to distinguish different running services in the virtual machine and identify abnormal process behavior.Furthermore,in order to optimize the efficiency of the detection algorithm,a storage strategy combining compressed sparse row(CSR)matrix and K-dimension tree is designed.Eventually a prototype system called VMPBD(virtual machine process behavior detecting)has been implemented on the platform of KVM(kernel-based virtual machine).The functions and performance of VMPBD is tested on Linux and Windows virtual machines.The results show that VMPBD can effectively detect the abnormal behavior of the virtual machine processes,and the detection false alarm rate and system performance overhead are within the acceptable range.
作者 陈兴蜀 陈佳昕 金鑫 葛龙 Chen Xingshu;Chen Jiaxin;Jin Xin;Ge Long((School of Cybersecurity,Sichuan University,Chengdu 610065;School of Computing,Sichuan University,Chengdu 610065)
出处 《计算机研究与发展》 EI CSCD 北大核心 2019年第12期2684-2693,共10页 Journal of Computer Research and Development
基金 国家自然科学基金青年科学基金项目(61802270,61802271) 四川省重点研发项目(2018GZ0100) 中央高校基本科研业务费专项资金(2017SCU11059)~~
关键词 虚拟化 异常检测 系统调用分析 向量空间 基于内核的虚拟机 virtualization anomaly detection system call analysis vector space kernel-based virtual machine
  • 相关文献

参考文献5

二级参考文献50

  • 1郜燕,刘文芬.基于隐Markov过程的网络信任评估模型[J].四川大学学报(工程科学版),2015,47(3):101-107. 被引量:2
  • 2张相锋,孙玉芳,赵庆松.基于系统调用子集的入侵检测[J].电子学报,2004,32(8):1338-1341. 被引量:10
  • 3尹清波,张汝波,李雪耀,王慧强.基于线性预测与马尔可夫模型的入侵检测技术研究[J].计算机学报,2005,28(5):900-907. 被引量:29
  • 4KUMAR S. Classification and detection of computer intrusion[ D]. West Lafayette, USA: Purdue University, 1995. 被引量:1
  • 5FORREST S, HOFMEYR S A, SOMAYAJI A. A sense of self for Unix processes[ C]// Proceedings of 1996 IEEE Symposium on Se- curity and Privacy. Washington, DC: IEEE Computer Society, 1996:120 - 128. 被引量:1
  • 6WARRENDER C, FORREST S, PEARLMUTYER B. Detecting in- trusions using system calls: alternative data model[ C]// Proceed- ings of 1999 IEEE Symposium on Security and Privacy. Washington, DC: IEEE Computer Society, 1999:133-145. 被引量:1
  • 7HOFMEYR S A, FORREST S, SOMAYAJI A. Intrusion detection using sequences of system calls[ J]. Journal of Computer Security, 1998, 6(3): 151-180. 被引量:1
  • 8FORREST S, ALLEN A, PERELSON A S, et al. Self-nonself dis- crimination in a computer[ C]//Proceedings of 1994 IEEE Symposi- um on Security and Privacy. Washington, DC: IEEE Computer Soci- ety, 1994:202-213. 被引量:1
  • 9QIAO Y, XIN X W, BIN Y, et al. Anomaly intrusion detection method based on HMM[ J]. IEEE Electronic Letters, 2002, 38 (13): 663-664. 被引量:1
  • 10CHO S, PARK H. Efficient anomaly detection by modeling privilege flows using hidden Markov model [ J]. Computer and Security, 2003, 22(1): 45-55. 被引量:1

共引文献14

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部